Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = Zircos-E etching

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 19180 KiB  
Article
Effect of the Intaglio Surface Treatment and Thickness of Different Types of Yttria-Stabilized Tetragonal Zirconia Polycrystalline Materials on the Flexural Strength: In-Vitro Study
by Razan S. Almirabi and Khaled M. Alzahrani
Materials 2024, 17(21), 5256; https://doi.org/10.3390/ma17215256 - 29 Oct 2024
Cited by 3 | Viewed by 1619
Abstract
Background: Surface treatment of the intaglio surface of zirconia is important for bonding. However, it could affect the strength of the materials. The purpose of this study is to compare the effect of laser, etching, and air abrasion surface treatment methods to a [...] Read more.
Background: Surface treatment of the intaglio surface of zirconia is important for bonding. However, it could affect the strength of the materials. The purpose of this study is to compare the effect of laser, etching, and air abrasion surface treatment methods to a control group on the flexural strength of three zirconia materials with two different thicknesses. (1) Methods: A total of 120 disks were divided into three groups according to the type of zirconia and the ceramic thickness. Then, according to the surface treatment method, the groups were divided into four subdivisions. The change in the microstructure of the ceramic material was investigated through Scanning Electron Microscope (EVO LS10, Carl Zeiss SMT Ltd. Oberkochen, Germany). Phase identification was performed using an X-ray diffraction device (XRD; Ultimate IV X-ray Diffractometer, Rigaku Inc., Tokyo, Japan). The flexural strength was assessed with a biaxial flexural strength test in a universal testing machine. Data were analyzed using SPSS Software (SPSS version 26.0.Armonk, NY: IBM Corp). A three-way ANOVA and a post hoc Dunnett T3 test were employed to evaluate the effect of the yttria concentration, thickness, and surface treatment on the flexural strength of zirconia (α = 0.05). (2) Results: At 0.8 mm thickness, air abrasion significantly increased the flexural strength of 3Y-TZP (1130.6 ± 171.3 MPa) and 4Y-TZP (872 ± 108.6 MPa). However, air abrasion significantly decreased the flexural strength of 5Y-TZP materials (373 ± 46.8 MPa). Laser irradiation significantly decreased the flexural strength of 5Y-TZP (347 ± 50.3 MPa), while etching significantly decreased the flexural strength of both 3Y-TZP (530 ± 48.8) and 4Y-TZP (457.1 ± 57.3). When the thickness increased to 1 mm, air abrasion continued to significantly decrease the flexural strength of 5Y-TZP materials. (3) Conclusions: There was a negative effect of surface treatment on the flexural strength at 0.8 mm thickness rather than at 1 mm thickness. Air abrasion enhances the flexural strength of 3Y-TZP and 4Y-TZP materials but significantly reduces the flexural strength of 5Y-TZP materials. Zircos-E etching and Er:YAG surface treatment methods did not significantly reduce the flexural strength of 5Y-TZP materials at 1 mm thickness and can be recommended as an alternative surface treatment for 5Y-TZP materials. Full article
Show Figures

Figure 1

12 pages, 5874 KiB  
Article
Effects of Surface-Etching Systems on the Shear Bond Strength of Dual-Polymerized Resin Cement and Zirconia
by Sang-Hyun Kim, Kyung Chul Oh and Hong-Seok Moon
Materials 2024, 17(13), 3096; https://doi.org/10.3390/ma17133096 - 24 Jun 2024
Cited by 4 | Viewed by 1522
Abstract
Adhesion of zirconia is difficult; thus, etching agents using several different methods are being developed. We investigated the effects of surface treatment with commercially available etching agents on the bond strength between zirconia and resin cement and compared them with those achieved using [...] Read more.
Adhesion of zirconia is difficult; thus, etching agents using several different methods are being developed. We investigated the effects of surface treatment with commercially available etching agents on the bond strength between zirconia and resin cement and compared them with those achieved using air abrasion alone. We used 100 zirconia blocks, of which 20 blocks remained untreated, 20 blocks were sandblasted, and 60 blocks were acid-etched using three different zirconia-etching systems: Zircos-E etching (strong-acid etching), smart etching (acid etching after air abrasion), and cloud etching (acid etching under a hot stream). Each group was subjected to a bonding procedure with dual-polymerized resin cement, and then 50 specimens were thermocycled. The shear bond strengths between the resin cement and zirconia before and after the thermocycling were evaluated. We observed that in the groups that did not undergo thermocycling, specimens surface-treated with solution did not show a significant increase in shear bond strength compared to the sandblasted specimens (p > 0.05). Among the thermocycled groups, the smart-etched specimens showed the highest shear bond strength. In the short term, various etching agents did not show a significant increase in bond strength compared to sandblasting alone, but in the long term, smart etching showed stability in bond strength (p < 0.05). Full article
(This article belongs to the Special Issue Ceramic Dental Restorations: From Materials Sciences to Applications)
Show Figures

Figure 1

12 pages, 2298 KiB  
Article
The Shear Bond Strength of Resin-Based Luting Cement to Zirconia Ceramics after Different Surface Treatments
by Grzegorz Sokolowski, Agata Szczesio-Wlodarczyk, Małgorzata Iwona Szynkowska-Jóźwik, Wioleta Stopa, Jerzy Sokolowski, Karolina Kopacz and Kinga Bociong
Materials 2023, 16(15), 5433; https://doi.org/10.3390/ma16155433 - 2 Aug 2023
Cited by 13 | Viewed by 2371
Abstract
Due to its unique properties, zirconia is increasingly being used in dentistry, but surface preparation for bonding is difficult because of its polycrystalline structure. This study aimed to determine the effect of a new etching technique (Zircos-E) on Ceramill Zi (Amann Girrbach). The [...] Read more.
Due to its unique properties, zirconia is increasingly being used in dentistry, but surface preparation for bonding is difficult because of its polycrystalline structure. This study aimed to determine the effect of a new etching technique (Zircos-E) on Ceramill Zi (Amann Girrbach). The effect of etching and the use of primers (Monobond Plus and MKZ Primer) on the bond strength of zirconia with resin cement (NX3) was assessed. Shear bond strength was evaluated after storage in water for 24 h and after thermal aging (5000 thermocycling at 5 °C/55 °C). A scanning electron microscope (Hitachi S-4700) was used to evaluate the surface structure before and after the Zircos-E system. The roughness parameters were assessed using an SJ-410 profilometer. The etched zirconia surface is more homogeneous over the entire surface, but some localized forms of erosion exist. The etching of zirconia ceramics caused changes in the surface structure of zirconia and a significant increase in the shear bond strength between zirconia and resin cement. The use of primers positively affects the adhesion between resin cement and zirconia. Aging with thermocycler significantly reduced the shear bond strength, with one exception—sandblasted samples with MKZ Primer. Standard ceramic surface preparation, involving only alumina sandblasting, does not provide a satisfactory bond. The use of etching with the Zircos-E system and primers had a positive effect on the strength of the zirconium–resin cement connection. Full article
(This article belongs to the Special Issue Advanced Materials for Oral Application (Volume II))
Show Figures

Figure 1

Back to TopTop