Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = ZenFS

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
8 pages, 265 KB  
Article
Evaluation of a New Tandem Mass Spectrometry Method for Sickle Cell Disease Newborn Screening
by Céline Renoux, Estelle Roland, Séverine Ruet, Sarah Zouaghi, Marie Michel, Philippe Joly, Cécile Feray, Fanny Zhao, Déborah Gavanier, Pascal Gaucherand, Fanny Roumieu, Giovanna Cannas, Salima Merazga, Philippe Connes, Gilles Renom, Jérôme Massardier and David Cheillan
Int. J. Neonatal Screen. 2024, 10(4), 77; https://doi.org/10.3390/ijns10040077 - 26 Nov 2024
Cited by 2 | Viewed by 1804
Abstract
In France, sickle cell disease newborn screening (SCD NBS) has been targeted to at-risk regions since 1984, but generalization to the whole population will be implemented from November 2024. Although tandem mass spectrometry (MS/MS) is already used for the NBS of several inherited [...] Read more.
In France, sickle cell disease newborn screening (SCD NBS) has been targeted to at-risk regions since 1984, but generalization to the whole population will be implemented from November 2024. Although tandem mass spectrometry (MS/MS) is already used for the NBS of several inherited metabolic diseases, its application for SCD NBS has not been widely adopted worldwide. The aim of this study was to evaluate a dedicated MS/MS kit (Targeted MS/MS Hemo, ZenTech, LaCAR Company, Liege, Belgium) for SCD NBS and to compare the results obtained with those from an NBS reference center using matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) and cation-exchange high-performance liquid chromatography (CE-HPLC, Variant NBS, Biorad Laboratories, Inc., Hercules, CA, USA) as confirmatory method. The MS/MS Hemo kit was used according to the manufacturer’s instructions and performed on a Waters Xevo TQ-D (Waters Corporation, USA). The software provided by the manufacturer was used for the calculation and analysis of peptide signal ratios. Among the 1333 samples, the results of 1324 samples were consistent with the HPLC and/or MALDI-TOF results (1263 FA, 50 FAS, 7 FAC, 1 FAO-Arab, and 3 FS). All the discordant results (one FAS on MS/MS vs. FA in CE-HPLC, one FA on MS/MS vs. FAS in CE-HPLC, seven FS on MS/MS vs. FAS in CE-HPLC) were corrected after modifying the peptide signal ratios thresholds, allowing the MS/MS Hemo kit to achieve near-100% sensitivity and specificity for SCD NBS. In conclusion, the MS/MS Hemo kit appears to be an effective method for SCD NBS, particularly for laboratories already equipped with MS/MS technology. However, these results should be confirmed in a larger cohort including a greater number of positive samples for SCD. Full article
26 pages, 3854 KB  
Article
Mixtures of Mycotoxins, Phytoestrogens, and Other Secondary Metabolites in Whole-Plant Corn Silages and Total Mixed Rations of Dairy Farms in Central and Northern Mexico
by Felipe Penagos-Tabares, Michael Sulyok, Juan-Ignacio Artavia, Samanta-Irais Flores-Quiroz, César Garzón-Pérez, Ezequías Castillo-Lopez, Luis Zavala, Juan-David Orozco, Johannes Faas, Rudolf Krska and Qendrim Zebeli
Toxins 2023, 15(2), 153; https://doi.org/10.3390/toxins15020153 - 13 Feb 2023
Cited by 11 | Viewed by 3991 | Correction
Abstract
Mycotoxins and endocrine disruptors such as phytoestrogens can affect cattle health, reproduction, and productivity. Most studies of mycotoxins in dairy feeds in Mexico and worldwide have been focused on a few (regulated) mycotoxins. In contrast, less known fungal toxins, phytoestrogens, and other metabolites [...] Read more.
Mycotoxins and endocrine disruptors such as phytoestrogens can affect cattle health, reproduction, and productivity. Most studies of mycotoxins in dairy feeds in Mexico and worldwide have been focused on a few (regulated) mycotoxins. In contrast, less known fungal toxins, phytoestrogens, and other metabolites have been neglected and underestimated. This study analyzed a broad spectrum (>800) of mycotoxins, phytoestrogens, and fungal, plant, and unspecific secondary metabolites in whole-plant corn silages (WPCSs) and total mixed rations (TMRs) collected from 19 Mexican dairy farms. A validated multi-metabolite liquid chromatography/electrospray ionization–tandem mass spectrometric (LC/ESI–MS/MS) method was used. Our results revealed 125 of >800 tested (potentially toxic) secondary metabolites. WPCSs/TMRs in Mexico presented ubiquitous contamination with mycotoxins, phytoestrogens, and other metabolites. The average number of mycotoxins per TMR was 24, ranging from 9 to 31. Fusarium-derived secondary metabolites showed the highest frequencies, concentrations, and diversity among the detected fungal compounds. The most frequently detected mycotoxins in TMRs were zearalenone (ZEN) (100%), fumonisin B1 (FB1) (84%), and deoxynivalenol (84%). Aflatoxin B1 (AFB1) and ochratoxin A (OTA), previously reported in Mexico, were not detected. All TMR samples tested positive for phytoestrogens. Among the investigated dietary ingredients, corn stover, sorghum silage, and concentrate proportions were the most correlated with levels of total mycotoxins, fumonisins (Fs), and ergot alkaloids, respectively. Full article
(This article belongs to the Special Issue Detection, Control and Contamination of Mycotoxins (Volume II))
Show Figures

Figure 1

13 pages, 3820 KB  
Article
Isolation and Mechanistic Characterization of a Novel Zearalenone-Degrading Enzyme
by Jian Ji, Jian Yu, Wei Xu, Yi Zheng, Yinzhi Zhang and Xiulan Sun
Foods 2022, 11(18), 2908; https://doi.org/10.3390/foods11182908 - 19 Sep 2022
Cited by 20 | Viewed by 2811
Abstract
Zearalenone (ZEN) and its derivatives pose a serious threat to global food quality and animal health. The use of enzymes to degrade mycotoxins has become a popular method to counter this threat. In this study, Aspergillus niger ZEN-S-FS10 extracellular enzyme solution with ZEN-degrading [...] Read more.
Zearalenone (ZEN) and its derivatives pose a serious threat to global food quality and animal health. The use of enzymes to degrade mycotoxins has become a popular method to counter this threat. In this study, Aspergillus niger ZEN-S-FS10 extracellular enzyme solution with ZEN-degrading effect was separated and purified to prepare the biological enzyme, FSZ, that can degrade ZEN. The degradation rate of FSZ to ZEN was 75–80% (pH = 7.0, 28 °C). FSZ can function in a temperature range of 28–38 °C and pH range of 2.0–7.0 and can also degrade ZEN derivatives (α-ZAL, β-ZOL, and ZAN). According to the enzyme kinetics fitting, ZEN has a high degradation rate. FSZ can degrade ZEN in real samples of corn flour. FSZ can be obtained stably and repeatedly from the original strain. One ZEN degradation product was isolated: FSZ−P(C18H26O4), with a relative molecular weight of 306.18 g/mol. Amino-acid-sequencing analysis revealed that FSZ is a novel enzyme (homology < 10%). According to the results of molecular docking, ZEN and ZAN can utilize their end-terminal carbonyl groups to bind FSZ residues PHE307, THR55, and GLU129 for a high-degradation rate. However, α-ZAL and β-ZOL instead contain hydroxyl groups that would prevent binding to GLU129; thus, the degradation rate is low for these derivatives. Full article
(This article belongs to the Special Issue Application of Enzyme Engineering in Food)
Show Figures

Graphical abstract

16 pages, 1983 KB  
Article
Selective Power-Loss-Protection Method for Write Buffer in ZNS SSDs
by Junseok Yang, Seokjun Lee and Sungyong Ahn
Electronics 2022, 11(7), 1086; https://doi.org/10.3390/electronics11071086 - 30 Mar 2022
Cited by 4 | Viewed by 4549
Abstract
Most SSDs (solid-state drives) use an internal DRAM (Dynamic Random Access Memory) to improve the I/O performance and extend SSD lifespan by absorbing write requests. However, this volatile memory does not guarantee the persistence of buffered data in the event of sudden power-off. [...] Read more.
Most SSDs (solid-state drives) use an internal DRAM (Dynamic Random Access Memory) to improve the I/O performance and extend SSD lifespan by absorbing write requests. However, this volatile memory does not guarantee the persistence of buffered data in the event of sudden power-off. Therefore, highly reliable enterprise SSDs employ power-loss-protection (PLP) logic to ensure the durability of buffered data using the back-up power of capacitors. The SSD must provide enough capacitors for the PLP in proportion to the size of the volatile buffer. Meanwhile, emerging ZNS (Zoned Namespace) SSDs are attracting attention because they can support many I/O streams that are useful in multi-tenant systems. Although ZNS SSDs do not use an internal mapping table unlike conventional block-interface SSDs, a large write buffer is required to provide many I/O streams. The reason is that each I/O stream needs its own write buffer for write buffering where the host can allocate separate zones to different I/O streams. Moreover, the larger capacity and more I/O streams the ZNS SSD supports, the larger write buffer is required. However, the size of the write buffer depends on the amount of capacitance, which is limited not only by the SSD internal space, but also by the cost. Therefore, in this paper, we present a set of techniques that significantly reduce the amount of capacitance required in ZNS SSDs, while ensuring the durability of buffered data during sudden power-off. First, we note that modern file systems or databases have their own solutions for data recovery, such as WAL (Write-ahead Log) and journal. Therefore, we propose a selective power-loss-protection method that ensures durability only for the WAL or journal required for data recovery, not for the entire buffered data. Second, to minimize the time taken by the PLP, we propose a balanced flush method that temporarily writes buffered data to multiple zones to maximize parallelism and preserves the data in its original location when power is restored. The proposed methods are implemented and evaluated by modifying FEMU (QEMU-based Flash Emulator) and RocksDB. According to experimental results, the proposed selective-PLP reduces the amount of capacitance by 50 to 90% while retaining the reliability of ZNS SSDs. In addition, the balanced flush method reduces the PLP latency by up to 96%. Full article
(This article belongs to the Special Issue Emerging Memory Technologies for Next-Generation Applications)
Show Figures

Figure 1

17 pages, 21705 KB  
Article
Efficient Key-Value Data Placement for ZNS SSD
by Gijun Oh, Junseok Yang and Sungyong Ahn
Appl. Sci. 2021, 11(24), 11842; https://doi.org/10.3390/app112411842 - 13 Dec 2021
Cited by 19 | Viewed by 6653
Abstract
Log-structured merge-tree (LSM-Tree)-based key–value stores are attracting attention for their high I/O (Input/Output) performance due to their sequential write characteristics. However, excessive writes caused by compaction shorten the lifespan of the Solid-state Drive (SSD). Therefore, there are several studies aimed at reducing garbage [...] Read more.
Log-structured merge-tree (LSM-Tree)-based key–value stores are attracting attention for their high I/O (Input/Output) performance due to their sequential write characteristics. However, excessive writes caused by compaction shorten the lifespan of the Solid-state Drive (SSD). Therefore, there are several studies aimed at reducing garbage collection overhead by using Zoned Namespace ZNS; SSD in which the host can determine data placement. However, the existing studies have limitations in terms of performance improvement because the lifetime and hotness of key–value data are not considered. Therefore, in this paper, we propose a technique to minimize the space efficiency and garbage collection overhead of SSDs by arranging them according to the characteristics of key–value data. The proposed method was implemented by modifying ZenFS of RocksDB and, according to the result of the performance evaluation, the space efficiency could be improved by up to 75%. Full article
(This article belongs to the Special Issue System Software Issues in Future Computing Systems)
Show Figures

Figure 1

17 pages, 2125 KB  
Article
Exploration on the Enhancement of Detoxification Ability of Zearalenone and Its Degradation Products of Aspergillus niger FS10 under Directional Stress of Zearalenone
by Jian Ji, Jian Yu, Yang Yang, Xiao Yuan, Jia Yang, Yinzhi Zhang, Jiadi Sun and Xiulan Sun
Toxins 2021, 13(10), 720; https://doi.org/10.3390/toxins13100720 - 12 Oct 2021
Cited by 17 | Viewed by 3449
Abstract
Zearalenone (ZEN) is one of the most common mycotoxin contaminants in food. For food safety, an efficient and environmental-friendly approach to ZEN degradation is significant. In this study, an Aspergillus niger strain, FS10, was stimulated with 1.0 μg/mL ZEN for 24 h, repeating [...] Read more.
Zearalenone (ZEN) is one of the most common mycotoxin contaminants in food. For food safety, an efficient and environmental-friendly approach to ZEN degradation is significant. In this study, an Aspergillus niger strain, FS10, was stimulated with 1.0 μg/mL ZEN for 24 h, repeating 5 times to obtain a stressed strain, Zearalenone-Stressed-FS10 (ZEN-S-FS10), with high degradation efficiency. The results show that the degradation rate of ZEN-S-FS10 to ZEN can be stabilized above 95%. Through metabolomics analysis of the metabolome difference of FS10 before and after ZEN stimulation, it was found that the change of metabolic profile may be the main reason for the increase in the degradation rate of ZEN. The optimization results of degradation conditions of ZEN-S-FS10 show that the degradation efficiency is the highest with a concentration of 104 CFU/mL and a period of 28 h. Finally, we analyzed the degradation products by UPLC-q-TOF, which shows that ZEN was degraded into two low-toxicity products: C18H22O8S (Zearalenone 4-sulfate) and C18H22O5 ((E)-Zearalenone). This provides a wide range of possibilities for the industrial application of this strain. Full article
Show Figures

Figure 1

Back to TopTop