Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = Yadong region

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 7072 KiB  
Article
Correlation Analysis of the Transcriptome and Gut Microbiota in Salmo trutta Resistance to Aeromonas salmonicida
by Shuaijie Sun, Jun Lv, Kuankuan Lei, Zhuangzhuang Wang, Wanliang Wang, Zhichao Li, Ming Li and Jianshe Zhou
Microorganisms 2024, 12(10), 1983; https://doi.org/10.3390/microorganisms12101983 - 30 Sep 2024
Cited by 1 | Viewed by 1254
Abstract
Aeromonas salmonicida is a major pathogenic bacterium that poses a significant threat to salmonid fish. Yadong County, located in the Xizang Autonomous Region, is renowned for its characteristic industry of Salmo trutta aquaculture. In recent years, the outbreak of Bacterial Gill Disease (BGD) [...] Read more.
Aeromonas salmonicida is a major pathogenic bacterium that poses a significant threat to salmonid fish. Yadong County, located in the Xizang Autonomous Region, is renowned for its characteristic industry of Salmo trutta aquaculture. In recent years, the outbreak of Bacterial Gill Disease (BGD) has led to substantial economic losses for S. trutta farmers. Our prior research identified A. salmonicida as one of the primary culprits behind BGD. To mitigate the impact of A. salmonicida on S. trutta, we conducted a comprehensive study aimed at identifying genes associated with resistance to A. salmonicida. This involved transcriptome sequencing and 16S rRNA sequencing of intestinal flora, providing valuable insights for the study of disease resistance in S. trutta. In this study, we identified 324 genera with 5171 ASVs in the susceptible group and 293 genera with 5669 ASVs in the resistant group. Notably, Methylobacterium and Sphingomonas were common bacteria present in the salmon’s gut, and their proportions remained relatively stable before and after infection. Shewanella, with its antagonistic relationship with Aeromonas, may play a crucial role in the salmon’s defense against A. salmonicida. Several related genes were identified, including angptl4, cipcb, grasp, ccr9a, sulf1, mtmr11, B3GNT3, mt2, PLXDC1, and ank1b. Full article
(This article belongs to the Section Veterinary Microbiology)
Show Figures

Figure 1

15 pages, 16261 KiB  
Article
Quantifying the Pabu Normal Fault Scarp, Southern Tibetan Plateau: Insights into Regional Earthquake Risk
by Guanghao Ha and Feng Liu
Remote Sens. 2024, 16(18), 3473; https://doi.org/10.3390/rs16183473 - 19 Sep 2024
Viewed by 932
Abstract
The location of the main boundary fault of the Yadong-Gulu Rift (YGR) shifts from the east side in the southern segment to the west side in the northern segment. The Nyemo Graben Group (NGG) connects the southern and northern segments of the YGR [...] Read more.
The location of the main boundary fault of the Yadong-Gulu Rift (YGR) shifts from the east side in the southern segment to the west side in the northern segment. The Nyemo Graben Group (NGG) connects the southern and northern segments of the YGR and provides clues for understanding the migration of boundary fault locations along the YGR. However, the NGG has received very little attention. In this study, we map the geometry of the Pabu normal fault, which is the boundary fault of the westernmost graben in the NGG, using high-resolution remote sensing images. We then utilized a digital elevation model (DEM) with a spatial resolution of 1 m. Morphometric parameters such as scarp height, width, and slope were obtained from elevation profiles in three typical deformation regions. Our results reveal a fault segment approximately 3 km long that links the southern and northern segments of the Pabu Fault. Each fault segment could be a major segment. Furthermore, based on regional tectonic activity, the Pabu Fault has the potential to produce an earthquake with a magnitude of around M 6.7. Full article
Show Figures

Figure 1

23 pages, 13131 KiB  
Article
Assessing the Activity of Eastern Himalayan Extensional Structures: Evidence from Low-Temperature Thermochronology of Granitic Rocks from Yadong
by Tiankun Xu, Yalin Li, Finlay M. Stuart, Zining Ma, Wenjun Bi, Yongyong Jia and Bo Yang
Minerals 2024, 14(1), 66; https://doi.org/10.3390/min14010066 - 5 Jan 2024
Cited by 1 | Viewed by 2115
Abstract
The east–west-trending South Tibetan Detachment System (STDS) and north–south-trending rifts (NSTRs) are the two main types of extensional structures that have developed within the Tibetan Plateau during continent–continent collision since the early Cenozoic. They have played significant roles in the evolution of the [...] Read more.
The east–west-trending South Tibetan Detachment System (STDS) and north–south-trending rifts (NSTRs) are the two main types of extensional structures that have developed within the Tibetan Plateau during continent–continent collision since the early Cenozoic. They have played significant roles in the evolution of the plateau, but it is unclear how they are related genetically. In the Yadong area of the eastern Himalaya, the NSTRs cross-cut the STDS. Apatite and zircon fission track ages of a leucogranite pluton in the footwall of the two extensional faults can be used to reconstruct the cooling and exhumation history and thereby constrain the activity of extensional structures. The new AFT ages range from 10.96 ± 0.70 to 5.68 ± 0.37 Ma, and the ZFT age is 13.57 ± 0.61 Ma. Track length distributions are unimodal, albeit negatively skewed, with standard deviations between 1.4 and 2.1 µm and mean track lengths between 11.6 and 13.4 µm. In conjunction with previously published datasets, the thermal history of the region is best explained by three distinct pulses of exhumation in the last 16 Ma. The first pulse (16–12 Ma) records a brittle slip on the STDS. The two subsequent pulses are attributed to the movement on the Yadong normal fault. The normal fault initiated at ~12 Ma and experienced a pulse of accelerated exhumation between 6.2 and 4.7 Ma, probably reflecting the occurrence of two distinct phases of fault activity within the NSTRs, which were primarily instigated by slab tear of the subducting Indian plate. Full article
(This article belongs to the Special Issue Thermal History Modeling of Low-Temperature Thermochronological Data)
Show Figures

Figure 1

17 pages, 94622 KiB  
Article
Upper Mantle Velocity Structure Beneath the Yarlung–Tsangpo Suture Revealed by Teleseismic P-Wave Tomography
by Dong Yan, You Tian, Zhiqiang Li and Hongli Li
Remote Sens. 2023, 15(11), 2724; https://doi.org/10.3390/rs15112724 - 24 May 2023
Cited by 1 | Viewed by 1990
Abstract
We applied teleseismic tomography to investigate the 3D P-wave velocity (Vp) structure of the crust and upper mantle at depths of 50–400 km beneath the Yarlung–Tsangpo suture (YTS), by using 6164 P-wave relative travel-time residuals collected from 495 teleseismic events recorded at 20 [...] Read more.
We applied teleseismic tomography to investigate the 3D P-wave velocity (Vp) structure of the crust and upper mantle at depths of 50–400 km beneath the Yarlung–Tsangpo suture (YTS), by using 6164 P-wave relative travel-time residuals collected from 495 teleseismic events recorded at 20 three-component broadband seismograms. A modified multi-channel cross-correlation method was adopted to automatically calculate the relative arrival-time residuals of all teleseismic events, which significantly improved the efficiency and precision of the arrival-time data collection. Our results show that alternating low- and high-Vp anomalies are visible beneath the Himalayan and Lhasa blocks across the YTS, indicating that strong lateral heterogeneities exist beneath the study region. A significant high-Vp zone is visible beneath the southern edge of the Lhasa block at 50–100 km depths close to the YTS, which might indicate the rigid Tibetan lithosphere basement. There exists a prominent low-Vp zone beneath the Himalayan block to the south of the YTS extending to ~150 km depth, which might be associated with the fragmentation of the underthrusting Indian continental lithosphere (ICL) and induce localized upwelling of asthenospheric materials from the upper mantle. In addition, significant low-Vp anomalies were observed beneath the Yadong–Gulu rift and the Cona–Sangri rift extending to ~300 km depth, indicating that the tearing of the subducted ICL might provide pathways for the localized asthenospheric materials upwelling, which contributes to the widespread distribution of north–south trending rifts and geothermal activities in southern Tibet. Full article
(This article belongs to the Topic Advances in Earth Observation and Geosciences)
Show Figures

Graphical abstract

13 pages, 2662 KiB  
Article
The Effect of Environmental Factors on the Diversity of Crane Flies (Tipulidae) in Mountainous and Non-Mountainous Regions of the Qinghai-Tibet Plateau and Surrounding Areas
by Qicheng Yang, Wei Chen, Lishan Qian, Ding Yang, Xiaoyan Liu and Manqun Wang
Insects 2022, 13(11), 1054; https://doi.org/10.3390/insects13111054 - 15 Nov 2022
Cited by 3 | Viewed by 2183
Abstract
Tipulidae, one of the most diverse families of Diptera, is widely distributed in the world. The adults have weak flight ability, making it an ideal model for studying the formation of insect diversity. This study aims to explore the species diversity and endemism [...] Read more.
Tipulidae, one of the most diverse families of Diptera, is widely distributed in the world. The adults have weak flight ability, making it an ideal model for studying the formation of insect diversity. This study aims to explore the species diversity and endemism of Tipulidae in the Qinghai-Tibet Plateau and the surrounding areas, as well as analyze the relationships between the diversity pattern and 25 environmental factors in mountainous and non-mountainous regions. To this end, we collected 2589 datasets for the distribution of 1219 Tipulidae species, and found three areas with high diversities of Tipulidae around the QTP, including the Sikkim-Yadong area, Kamen River Basin, and Gongga Mountain. Further R, generalized additive model (GAM), and stepwise multiple regression analysis indicated that the richness and endemism of Tipulidae is mainly influenced by the warmest quarter precipitation and topographic heterogeneity in mountainous regions, but in non-mountainous regions, the richness is mostly affected by the precipitation seasonality, while there is no regularity in the relationship between endemism and environmental factors. In addition, the richness model in mountainous regions was in conformity with the results of GAM. Full article
(This article belongs to the Special Issue Climate Sensitive Ecological and Dynamical Models of Insects)
Show Figures

Figure 1

Back to TopTop