Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Wuzhi capsule (WZC)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3361 KiB  
Article
Examination of the Impact of CYP3A4/5 on Drug–Drug Interaction between Schizandrol A/Schizandrol B and Tacrolimus (FK-506): A Physiologically Based Pharmacokinetic Modeling Approach
by Qingfeng He, Fengjiao Bu, Qizhen Wang, Min Li, Jiaying Lin, Zhijia Tang, Wen Yao Mak, Xiaomei Zhuang, Xiao Zhu, Hai-Shu Lin and Xiaoqiang Xiang
Int. J. Mol. Sci. 2022, 23(9), 4485; https://doi.org/10.3390/ijms23094485 - 19 Apr 2022
Cited by 20 | Viewed by 3231
Abstract
Schizandrol A (SZA) and schizandrol B (SZB) are two active ingredients of Wuzhi capsule (WZC), a Chinese proprietary medicine commonly prescribed to alleviate tacrolimus (FK-506)-induced hepatoxicity in China. Due to their inhibitory effects on cytochrome P450 (CYP) 3A enzymes, SZA/SZB may display drug–drug [...] Read more.
Schizandrol A (SZA) and schizandrol B (SZB) are two active ingredients of Wuzhi capsule (WZC), a Chinese proprietary medicine commonly prescribed to alleviate tacrolimus (FK-506)-induced hepatoxicity in China. Due to their inhibitory effects on cytochrome P450 (CYP) 3A enzymes, SZA/SZB may display drug–drug interaction (DDI) with tacrolimus. To identify the extent of this DDI, the enzymes’ inhibitory profiles, including a 50% inhibitory concentration (IC50) shift, reversible inhibition (RI) and time-dependent inhibition (TDI) were examined with pooled human-liver microsomes (HLMs) and CYP3A5-genotyped HLMs. Subsequently, the acquired parameters were integrated into a physiologically based pharmacokinetic (PBPK) model to quantify the interactions between the SZA/SZB and the tacrolimus. The metabolic studies indicated that the SZB displayed both RI and TDI on CYP3A4 and CYP3A5, while the SZA only exhibited TDI on CYP3A4 to a limited extent. Moreover, our PBPK model predicted that multiple doses of SZB would increase tacrolimus exposure by 26% and 57% in CYP3A5 expressers and non-expressers, respectively. Clearly, PBPK modeling has emerged as a powerful approach to examine herb-involved DDI, and special attention should be paid to the combined use of WZC and tacrolimus in clinical practice. Full article
(This article belongs to the Special Issue Advance in Drug-Drug Interactions 2.0)
Show Figures

Figure 1

15 pages, 3404 KiB  
Article
Investigation of the Impact of CYP3A5 Polymorphism on Drug–Drug Interaction between Tacrolimus and Schisantherin A/Schisandrin A Based on Physiologically-Based Pharmacokinetic Modeling
by Qingfeng He, Fengjiao Bu, Hongyan Zhang, Qizhen Wang, Zhijia Tang, Jing Yuan, Hai-Shu Lin and Xiaoqiang Xiang
Pharmaceuticals 2021, 14(3), 198; https://doi.org/10.3390/ph14030198 - 27 Feb 2021
Cited by 18 | Viewed by 3529
Abstract
Wuzhi capsule (WZC) is commonly prescribed with tacrolimus in China to ease drug-induced hepatotoxicity. Two abundant active ingredients, schisantherin A (STA) and schisandrin A (SIA) are known to inhibit CYP3A enzymes and increase tacrolimus’s exposure. Our previous study has quantitatively demonstrated the contribution [...] Read more.
Wuzhi capsule (WZC) is commonly prescribed with tacrolimus in China to ease drug-induced hepatotoxicity. Two abundant active ingredients, schisantherin A (STA) and schisandrin A (SIA) are known to inhibit CYP3A enzymes and increase tacrolimus’s exposure. Our previous study has quantitatively demonstrated the contribution of STA and SIA to tacrolimus pharmacokinetics based on physiologically-based pharmacokinetic (PBPK) modeling. In the current work, we performed reversible inhibition (RI) and time-dependent inhibition (TDI) assays with CYP3A5 genotyped human liver microsomes (HLMs), and further integrated the acquired parameters into the PBPK model to predict the drug–drug interaction (DDI) in patients with different CYP3A5 alleles. The results indicated STA was a time-dependent and reversible inhibitor of CYP3A4 while only a reversible inhibitor of CYP3A5; SIA inhibited CYP3A4 and 3A5 in a time-dependent manner but also reversibly inhibited CYP3A5. The predicted fold-increases of tacrolimus exposure were 2.70 and 2.41, respectively, after the multidose simulations of STA. SIA also increased tacrolimus’s exposure but to a smaller extent compared to STA. An optimized physiologically-based pharmacokinetic (PBPK) model integrated with CYP3A5 polymorphism was successfully established, providing more insights regarding the long-term DDI between tacrolimus and Wuzhi capsules in patients with different CYP3A5 genotypes. Full article
Show Figures

Figure 1

Back to TopTop