Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = Wilkosz’s axioms

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 673 KiB  
Article
On Certain Axiomatizations of Arithmetic of Natural and Integer Numbers
by Urszula Wybraniec-Skardowska
Axioms 2019, 8(3), 103; https://doi.org/10.3390/axioms8030103 - 4 Sep 2019
Cited by 5 | Viewed by 3598
Abstract
The systems of arithmetic discussed in this work are non-elementary theories. In this paper, natural numbers are characterized axiomatically in two different ways. We begin by recalling the classical set P of axioms of Peano’s arithmetic of natural numbers proposed in 1889 (including [...] Read more.
The systems of arithmetic discussed in this work are non-elementary theories. In this paper, natural numbers are characterized axiomatically in two different ways. We begin by recalling the classical set P of axioms of Peano’s arithmetic of natural numbers proposed in 1889 (including such primitive notions as: set of natural numbers, zero, successor of natural number) and compare it with the set W of axioms of this arithmetic (including the primitive notions like: set of natural numbers and relation of inequality) proposed by Witold Wilkosz, a Polish logician, philosopher and mathematician, in 1932. The axioms W are those of ordered sets without largest element, in which every non-empty set has a least element, and every set bounded from above has a greatest element. We show that P and W are equivalent and also that the systems of arithmetic based on W or on P, are categorical and consistent. There follows a set of intuitive axioms PI of integers arithmetic, modelled on P and proposed by B. Iwanuś, as well as a set of axioms WI of this arithmetic, modelled on the W axioms, PI and WI being also equivalent, categorical and consistent. We also discuss the problem of independence of sets of axioms, which were dealt with earlier. Full article
(This article belongs to the Special Issue Deductive Systems in Traditional and Modern Logic)
Back to TopTop