Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = Westcott convention

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 9980 KiB  
Article
Bias Effects on g- and s-Factors in Westcott Convention
by Hideo Harada
Appl. Sci. 2021, 11(14), 6558; https://doi.org/10.3390/app11146558 - 16 Jul 2021
Viewed by 2182
Abstract
For accuracy improvement of neutron activation analysis and neutron capture cross sections, bias effects are investigated on g- and s-factors in the Westcott convention. As origins of biases, a joining function shape, neutron temperature, and sample temperature have been investigated. Biases are quantitatively [...] Read more.
For accuracy improvement of neutron activation analysis and neutron capture cross sections, bias effects are investigated on g- and s-factors in the Westcott convention. As origins of biases, a joining function shape, neutron temperature, and sample temperature have been investigated. Biases are quantitatively deduced for two 1/v isotopes (197Au, 59Co) and six non-1/v isotopes (241Am, 151Eu, 103Rh, 115In, 177Hf, 226Ra). The s-factor calculated with a joining function deduced recently by a detailed Monte Carlo simulation is compared to s-factors calculated with traditional joining functions by Westcott. The results show the bias induced by the sample temperature is small, in the order of 0.1% for the g-factor and in the order of 1% for the s-factor. On the other hand, the bias size induced by a joining function shape for the s-factor depends significantly on both isotopes and neutron temperature. As a result, the reaction rates are also affected significantly. The bias size for the reaction rate is given in the case of an epithermal neutron index r = 0.1, for the eight isotopes. Full article
(This article belongs to the Special Issue Research on the Uncertainty of Radionuclide Characterization)
Show Figures

Figure 1

Back to TopTop