Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = West Caucasian Bat Lyssavirus

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 19539 KiB  
Article
Spillover of West Caucasian Bat Lyssavirus (WCBV) in a Domestic Cat and Westward Expansion in the Palearctic Region
by Stefania Leopardi, Ettore Barneschi, Giuseppe Manna, Barbara Zecchin, Pamela Priori, Petra Drzewnioková, Francesca Festa, Andrea Lombardo, Fabio Parca, Dino Scaravelli, Andrea Maroni Ponti and Paola De Benedictis
Viruses 2021, 13(10), 2064; https://doi.org/10.3390/v13102064 - 14 Oct 2021
Cited by 25 | Viewed by 6091
Abstract
In June 2020, a cat from Arezzo (Italy) that died from a neurological disease was diagnosed with West Caucasian Bat Lyssavirus (WCBV). The virus retained high identity across the whole-genome with the reference isolate found in 2002 from a Russian bent-winged bat. We [...] Read more.
In June 2020, a cat from Arezzo (Italy) that died from a neurological disease was diagnosed with West Caucasian Bat Lyssavirus (WCBV). The virus retained high identity across the whole-genome with the reference isolate found in 2002 from a Russian bent-winged bat. We applied control measures recommended by national regulations, investigated a possible interface between cats and bats using visual inspections, bioacoustics analyses and camera trapping and performed active and passive surveillance in bats to trace the source of infection. People that were exposed to the cat received full post-exposure prophylaxis while animals underwent six months of quarantine. One year later, they are all healthy. In a tunnel located near the cat’s house, we identified a group of bent-winged bats that showed virus-neutralizing antibodies to WCBV across four sampling occasions, but no virus in salivary swabs. Carcasses from other bat species were all negative. This description of WCBV in a non-flying mammal confirms that this virus can cause clinical rabies in the absence of preventive and therapeutic measures, and highlights the lack of international guidelines against divergent lyssaviruses. We detected bent-winged bats as the most probable source of infection, testifying the encroachment between these bats and pets/human in urban areas and confirming free-ranging cats as potential hazard for public health and conservation. Full article
(This article belongs to the Special Issue Ecology of Virus Emergence from Wildlife)
Show Figures

Graphical abstract

11 pages, 1146 KiB  
Article
Utilisation of Chimeric Lyssaviruses to Assess Vaccine Protection against Highly Divergent Lyssaviruses
by Jennifer S. Evans, Guanghui Wu, David Selden, Hubert Buczkowski, Leigh Thorne, Anthony R. Fooks and Ashley C. Banyard
Viruses 2018, 10(3), 130; https://doi.org/10.3390/v10030130 - 15 Mar 2018
Cited by 12 | Viewed by 4728
Abstract
Lyssaviruses constitute a diverse range of viruses with the ability to cause fatal encephalitis known as rabies. Existing human rabies vaccines and post exposure prophylaxes (PEP) are based on inactivated preparations of, and neutralising antibody preparations directed against, classical rabies viruses, respectively. Whilst [...] Read more.
Lyssaviruses constitute a diverse range of viruses with the ability to cause fatal encephalitis known as rabies. Existing human rabies vaccines and post exposure prophylaxes (PEP) are based on inactivated preparations of, and neutralising antibody preparations directed against, classical rabies viruses, respectively. Whilst these prophylaxes are highly efficient at neutralising and preventing a productive infection with rabies virus, their ability to neutralise other lyssaviruses is thought to be limited. The remaining 15 virus species within the lyssavirus genus have been divided into at least three phylogroups that generally predict vaccine protection. Existing rabies vaccines afford protection against phylogroup I viruses but offer little to no protection against phylogroup II and III viruses. As such, work involving sharps with phylogroup II and III must be considered of high risk as no PEP is thought to have any effect on the prevention of a productive infection with these lyssaviruses. Whilst rabies virus itself has been characterised in a number of different animal models, data on the remaining lyssaviruses are scarce. As the lyssavirus glycoprotein is considered to be the sole target of neutralising antibodies we generated a vaccine strain of rabies using reverse genetics expressing highly divergent glycoproteins of West Caucasian Bat lyssavirus and Ikoma lyssavirus. Using these recombinants, we propose that recombinant vaccine strain derived lyssaviruses containing heterologous glycoproteins may be a suitable surrogate for wildtype viruses when assessing vaccine protection for the lyssaviruses. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

Back to TopTop