Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = Wadi Hanifah

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1953 KB  
Article
Screening for Antibiotic Resistance Genes in Bacteria and the Presence of Heavy Metals in the Upstream and Downstream Areas of the Wadi Hanifah Valley in Riyadh, Saudi Arabia
by Norah M. Al-Otaibi, Bassam Alsulaiman, Fahad M. Alreshoodi, Lenah E. Mukhtar, Sulaiman M. Alajel, Norah M. Binsaeedan and Fahad M. Alshabrmi
Antibiotics 2024, 13(5), 426; https://doi.org/10.3390/antibiotics13050426 - 8 May 2024
Cited by 2 | Viewed by 3339
Abstract
Valley surface water is considered a focal public health concern owing to the presence of multi-drug-resistant bacteria. The distribution of antimicrobial resistance (AMR) bacteria in the surface water is affected by the presence of multiple factors, including antibiotics coming from wastewater discharge or [...] Read more.
Valley surface water is considered a focal public health concern owing to the presence of multi-drug-resistant bacteria. The distribution of antimicrobial resistance (AMR) bacteria in the surface water is affected by the presence of multiple factors, including antibiotics coming from wastewater discharge or other contaminant sources such as pharmaceuticals, biocides, and heavy metals. Furthermore, there is evidence suggesting that high levels of antibiotic resistance genes (ARGs) can be transferred within bacterial communities under the influence of heavy metal stress. Hence, the primary aim of this study is to investigate the presence of heavy metals and bacterial ARGs in upstream as well as downstream locations of Wadi Hanifah Valley in Riyadh, Saudi Arabia. Sample collection was conducted at eighteen surface water sites within the valley in total. The selection of ARGs was associated with the most common antibiotics, including β-lactam, tetracycline, erythromycin, gentamicin, sulphonamide, chloramphenicol, vancomycin, trimethoprim, and colistin antibiotics, which were detected qualitatively using polymerase chain reaction (PCR) technology. The tested antibiotic resistance genes (ARGs) included (blaNDM-1 (for the antibiotic class Beta-lactamases), mecA (methicillin-resistant Staphylococcus aureus), tet(M) and tet(B) (for the antibiotic class Tetracycline), ampC (for the antibiotic class Beta-lactamases), vanA (for the antibiotic class vancomycin), mcr-1 (for the antibiotic class colistin), erm(B) (for the antibiotic class erythromycin), aac6′-Ie-aph2-Ia (for the antibiotic class Gentamicin), sulII (for the antibiotic class sulphonamide), catII (for the antibiotic class Chlorophincol), and dfrA1 (for the antibiotic class trimethoprim). Moreover, an assessment of the levels of heavy metals such as lithium (Li), beryllium (Be), chromium (Cr), cobalt (Co), arsenic (As), cadmium (Cd), tin (Sn), mercury (Hg), and lead (Pb) was conducted by using inductively coupled plasma mass spectrometry (ICPMS). According to our findings, the concentrations of sulphonamide, erythromycin, and chloramphenicol ARGs (erm(B), sulII, and catII) were observed to be the most elevated. Conversely, two ARGs, namely mecA and mcr-1, were not detected in the samples. Moreover, our data illustrated a significant rise in ARGs in the bacteria of water samples from the upstream sites as compared with the water samples from the downstream sites of Wadi Hanifah Valley. The mean concentration of Li, Be, Cr, Co, As, Cd, Sn, Hg, and Pb in the water samples was estimated to be 37.25 µg/L, 0.02 µg/L, 0.56 µg/L,0.32 µg/L, 0.93 µg/L, 0.01 µg/L, 200.4 µg/L, 0.027 µg/L, and 0.26 µg/L, respectively, for the selected 18 sites. Furthermore, it was revealed that the concentrations of the screened heavy metals in the water samples collected from various sites did not surpass the maximum limits set by the World Health Organization (WHO). In conclusion, this study offers a concise overview of the presence of heavy metals and ARGs in water samples obtained from the Wadi Hanifah Valley in Riyadh, KSA. Such findings will contribute to the ongoing monitoring and future risk assessment of ARGs spread in surface water. Full article
Show Figures

Figure 1

30 pages, 7463 KB  
Article
Geospatial-Based Analytical Hierarchy Process (AHP) and Weighted Product Model (WPM) Techniques for Mapping and Assessing Flood Susceptibility in the Wadi Hanifah Drainage Basin, Riyadh Region, Saudi Arabia
by Abdulrahman Mubarark AlAli, Abdelrahim Salih and Abdalhaleem Hassaballa
Water 2023, 15(10), 1943; https://doi.org/10.3390/w15101943 - 20 May 2023
Cited by 34 | Viewed by 8626
Abstract
This paper aimed to map areas prone to flooding in the Wadi Hanifah drainage basin located in the Riyadh region, and identify the most important factors that contribute to flooding through examining the influence of ten topographical, hydrological, and environmental variables affecting flood [...] Read more.
This paper aimed to map areas prone to flooding in the Wadi Hanifah drainage basin located in the Riyadh region, and identify the most important factors that contribute to flooding through examining the influence of ten topographical, hydrological, and environmental variables affecting flood occurrence. Remote sensing data from Landsat-8, Shuttle Radar Topography Mission (SRTM), and other ancillary datasets were used to map relevant variables. Two weighted overlay techniques were used, including: analytical hierarchy process (AHP) and weighted product model (WPM). A correlation matrix and optimum index factor (OIF) were employed to identify the relative importance of each factor. The two derived flood susceptibility maps were assessed through validation by comparing the locations of historical flood events to susceptibility zones. The results confirmed the validity of the WPM map. The results also showed that nearly 50% of the study area was dominated by the “moderate” flood susceptibility zone, while about 33% of the total land area was classified as a “high” flood susceptibility zone. The “slope” factor was found to be the most effective variable for flood occurrence, followed by the “geology” variable, while the “distance to the drainage network” was the least important variable. The results of the OIF indicated that the best combination of factors dictating the variability of all flood susceptibility areas were “geology”, “land use/cover (LULC)”, and “soil type”. The study findings are expected to be useful in understanding the effects of each factor on the spatial variation in flood occurrence and in improving flood control, and can be reapplied to other regions with similar climatic and environmental conditions worldwide. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

11 pages, 1922 KB  
Article
Human Adenovirus Molecular Characterization in Various Water Environments and Seasonal Impacts in Riyadh, Saudi Arabia
by Islam Nour, Atif Hanif, Adel M. Zakri, Ibrahim Al-Ashkar, Abdulkarim Alhetheel and Saleh Eifan
Int. J. Environ. Res. Public Health 2021, 18(9), 4773; https://doi.org/10.3390/ijerph18094773 - 29 Apr 2021
Cited by 14 | Viewed by 3609
Abstract
The regular monitoring of water environments is essential for preventing waterborne virus-mediated contamination and mitigating health concerns. We aimed to detect human adenovirus (HAdV) in the Wadi Hanifah (WH) and Wadi Namar (WN) lakes, King Saud University wastewater treatment plant (KSU-WWTP), Manfouha-WWTP, irrigation [...] Read more.
The regular monitoring of water environments is essential for preventing waterborne virus-mediated contamination and mitigating health concerns. We aimed to detect human adenovirus (HAdV) in the Wadi Hanifah (WH) and Wadi Namar (WN) lakes, King Saud University wastewater treatment plant (KSU-WWTP), Manfouha-WWTP, irrigation water (IW), and AnNazim landfill (ANLF) in Riyadh, Saudi Arabia. HAdV hexon sequences were analyzed against 71 HAdV prototypes and investigated for seasonal influence. ANLF had the highest HAdV prevalence (83.3%). Remarkably, the F species of HAdV, especially serotype 41, predominated. Daily temperature ranges (22–45 °C and 10–33 °C) influenced the significance of the differences between the locations. The most significant relationship of ANLF and IW to WH and KSU-WWTP was found at the high-temperature range (p = 0.001). Meanwhile, WN was most correlated to ANLF at the low-temperature range (p < 0.0001). Seasonal influences on HAdV prevalence were insignificant despite HAdV’s high prevalence in autumn and winter months, favoring low temperatures (high: 22–25 °C, low: 14–17 °C) at five out of six locations. Our study provides insightful information on HAdV prevalence and the circulating strains that can address the knowledge gap in the environmental impacts of viruses and help control viral diseases in public health management. Full article
Show Figures

Figure 1

Back to TopTop