Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = WWF Hellas

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 17185 KiB  
Article
Use of LUCAS LC Point Database for Validating Country-Scale Land Cover Maps
by Christos G. Karydas, Ioannis Z. Gitas, Steffen Kuntz and Chara Minakou
Remote Sens. 2015, 7(5), 5012-5041; https://doi.org/10.3390/rs70505012 - 23 Apr 2015
Cited by 16 | Viewed by 6376
Abstract
In this study, the Land Use/Cover Area frame statistical Survey (LUCAS) of 2009 was used as a reference dataset for validating a Land Cover Map of Greece for 2007, produced with remote sensing by the Greek Office of the World Wildlife Fund (WWF [...] Read more.
In this study, the Land Use/Cover Area frame statistical Survey (LUCAS) of 2009 was used as a reference dataset for validating a Land Cover Map of Greece for 2007, produced with remote sensing by the Greek Office of the World Wildlife Fund (WWF Hellas). First, all class definitions were decomposed in terms of four vegetation parameters (type, height, density, and composition), considered as critical in indicating unconformities between LUCAS and the WWF Hellas map; their inter-class relations were described in a table of correspondence. Then, a two-tier methodology was applied: an “automated” process, where thematic agreement was based exclusively on the main land cover attribute of LUCAS (LC1); and a “supervised” process, where thematic agreement was based on the reinterpretation of LUCAS ground photos and use of ancillary earth observation imagery; non-square error matrix was deployed in both processes. For the supervised process specifically, a decision-tree was designed, using the critical vegetation parameters (mentioned above) as quantified criteria, thus allowing objective labelling of testing points in both systems. The results show that only a small proportion of the reassessed points verified the WWF Hellas map predictions and that the overall accuracy of the supervised process was reduced compared to that of the automated process. In conclusion, the LUCAS point database was found to be supportive, but not fully efficient, for identifying the various sources of error in country-scale land cover maps derived with remote sensing. Synergy with very high resolution satellite images and air photos, or a dedicated ground truth campaign, seems to be inevitable in order to validate their thematic accuracy, especially in highly heterogeneous environments. In this direction, LUCAS could be used as a verification, rather than a validation, dataset. Full article
Show Figures

Graphical abstract

Back to TopTop