Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = V-Ti composite burden

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 4148 KiB  
Article
Revealing the Softening-Melting Behaviors and Slag Characteristics of Vanadium-Titanium Magnetite Burden with Various MgO Addition
by Bin Wang, Wei Zhao, Xinghua Zhang, Shaoyan Hu, Hongwei Guo and Mansheng Chu
Minerals 2022, 12(7), 842; https://doi.org/10.3390/min12070842 - 30 Jun 2022
Cited by 7 | Viewed by 2100
Abstract
MgO addition plays an essential role in the blast furnace smelting process, including softening-melting characteristics and metallurgical properties of slag. In the present study, the effect of MgO distribution on the softening-melting characteristics and slag system of vanadium-titanium magnetite burden were explored by [...] Read more.
MgO addition plays an essential role in the blast furnace smelting process, including softening-melting characteristics and metallurgical properties of slag. In the present study, the effect of MgO distribution on the softening-melting characteristics and slag system of vanadium-titanium magnetite burden were explored by simulating BF conditions. The results show that the MgO flux addition significantly affects the crystallization temperature of slag-phase, the precipitated phase components, and slag viscosity. This indicates that appropriate MgO addition can improve the metallurgical properties of blast furnace slag effectively, thereby improving the softening-melting-dripping performance of the mixed burden. The V-Ti pellets with a MgO content higher than 2.40 wt% exhibit optimum metallurgical properties. With a constant MgO content in mixed burden, the softening-melting properties of composite burden could be improved effectively as the MgO partitioning scheme includes 1.90 wt% MgO in sinter and 3.02 wt% MgO in pellet. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

10 pages, 6194 KiB  
Article
Empirical Study on Reduction Behavior and Metallurgical Properties of Vanadia–Titania Magnetite in Blast Furnace
by Zhanwei He, Xiaojun Hu, Mo Lan, Jianxing Liu, Gongjin Cheng, Xiangxin Xue and Kouchih Chou
Minerals 2021, 11(4), 418; https://doi.org/10.3390/min11040418 - 15 Apr 2021
Cited by 4 | Viewed by 2171
Abstract
The loss of permeability affects the reduction of the ferrous burden in the cohesive zone of a blast furnace (BF). Vanadia–titania magnetite (VTM) burden of various chemical compositions have different metallurgical properties. The reduction and softening-melting-dripping properties of different kinds of VTM were [...] Read more.
The loss of permeability affects the reduction of the ferrous burden in the cohesive zone of a blast furnace (BF). Vanadia–titania magnetite (VTM) burden of various chemical compositions have different metallurgical properties. The reduction and softening-melting-dripping properties of different kinds of VTM were investigated. The results showed that the core of sinter or pellet is indirectly reduced to wustite and (Fe,Ti)Ox, and the periphery contains interlinked metallic iron and CaSiO3 in the cohesive zone. Wustite and (Fe,Ti)Ox are directly reduced in the melting-dripping zone. The aggregate (Fe, V, Cr) present in the non-dripping causes a loss of valuable components. With the increase in TiO2 content, the substrate phase of molten slag changes from melilite to titanaugite, and the mass of dripping decreases gradually. In addition, the permeability index S increased and the melting zone widened, which indicates that the increase in TiO2 content negatively affected the melting-dripping performance. The mass of the dripping is directly proportional to the pellet ratio. Considering the adverse effect of TiO2 on softening-melting-dripping properties, it is recommended that high TiO2 VTM is smelted while mixed with ordinary ores or with an increased pellet ratio in the burden structure. Full article
(This article belongs to the Special Issue Process Optimization in Mineral Processing)
Show Figures

Figure 1

14 pages, 5886 KiB  
Article
Effect of Calcium Oxide on the Crushing Strength, Reduction, and Smelting Performance of High-Chromium Vanadium–Titanium Magnetite Pellets
by Gongjin Cheng, Zixian Gao, He Yang and Xiangxin Xue
Metals 2017, 7(5), 181; https://doi.org/10.3390/met7050181 - 19 May 2017
Cited by 29 | Viewed by 5917
Abstract
The effect of calcium oxide on the crushing strength, reduction, and smelting performance of high-chromium vanadium–titanium magnetite pellets (HCVTMP) was studied in this work. The main characterization methods of an electronic universal testing machine (EUTM), X-ray fluorescent (XRF), inductively-coupled plasma-atomic emission spectroscopy (ICP-AES), [...] Read more.
The effect of calcium oxide on the crushing strength, reduction, and smelting performance of high-chromium vanadium–titanium magnetite pellets (HCVTMP) was studied in this work. The main characterization methods of an electronic universal testing machine (EUTM), X-ray fluorescent (XRF), inductively-coupled plasma-atomic emission spectroscopy (ICP-AES), X-ray diffraction (XRD), and scanning electron microscope-energy disperse spectroscopy (SEM-EDS) were employed. The crushing strength was affected by the mineral phases generated during oxidative baking and the subsequently-formed pellet microstructures owing to CaO addition. The reduction and smelting properties of HCVTMP with different CaO additives were measured and characterized with different softening-melting-dripping indices. Although HCVTMP showed the highest crushing strength with CaO addition of ca. 2 wt %, more CaO addition may be needed to achieve high permeability of the furnace burdens and a good separation condition of the slag and melted iron. In the formation process of the slag and melted iron, it can be determined that CaO could have a relationship with the transformation behavior of Cr, V, and Ti to some extent, with respect to the predominant chemical composition analysis of ICP-AES and XRF. With the microscopic examination, the restraining formation of Ti(C,N) and the promoting formation of CaTiO3 are in accordance with the improved melting-dripping indices, including the decrease of the maximum external static load and gas permeability, and the increase of the melting-dripping zone and dripping difficulty. Full article
Show Figures

Figure 1

Back to TopTop