Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = Treg/Tresp cell differentiation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 4234 KB  
Article
Impaired Differentiation of Highly Proliferative ICOS+-Tregs Is Involved in the Transition from Low to High Disease Activity in Systemic Lupus Erythematosus (SLE) Patients
by Florian Kälble, Lisa Wu, Hanns-Martin Lorenz, Martin Zeier, Matthias Schaier and Andrea Steinborn
Int. J. Mol. Sci. 2021, 22(17), 9501; https://doi.org/10.3390/ijms22179501 - 31 Aug 2021
Cited by 9 | Viewed by 2876
Abstract
Dysregulations in the differentiation of CD4+-regulatory-T-cells (Tregs) and CD4+-responder-T-cells (Tresps) are involved in the development of active systemic lupus erythematosus (SLE). Three differentiation pathways of highly proliferative inducible costimulatory molecule (ICOS)+- and less proliferative ICOS-CD45RA [...] Read more.
Dysregulations in the differentiation of CD4+-regulatory-T-cells (Tregs) and CD4+-responder-T-cells (Tresps) are involved in the development of active systemic lupus erythematosus (SLE). Three differentiation pathways of highly proliferative inducible costimulatory molecule (ICOS)+- and less proliferative ICOS-CD45RA+CD31+-recent-thymic-emigrant (RTE)-Tregs/Tresps via CD45RACD31+-memory-Tregs/Tresps (CD31+-memory-Tregs/Tresps), their direct proliferation via CD45RA+CD31-mature naïve (MN)-Tregs/Tresps, and the production and differentiation of resting MN-Tregs/Tresp into CD45RACD31-memory-Tregs/Tresps (CD31-memory-Tregs/Tresps) were examined in 115 healthy controls, 96 SLE remission patients, and 20 active disease patients using six color flow cytometric analysis. In healthy controls an appropriate sequence of these pathways ensured regular age-dependent differentiation. In SLE patients, an age-independently exaggerated differentiation was observed for all Treg/Tresp subsets, where the increased conversion of resting MN-Tregs/Tresps particularly guaranteed the significantly increased ratios of ICOS+-Tregs/ICOS+-Tresps and ICOS-Tregs/ICOS-Tresps during remission. Changes in the differentiation of resting ICOS+-MN-Tresps and ICOS-MN-Tregs from conversion to proliferation caused a significant shift in the ratio of ICOS+-Tregs/ICOS+-Tresps in favor of ICOS+-Tresps and a further increase in the ratio of ICOS-Tregs/ICOS-Tresps with active disease. The differentiation of ICOS+-RTE-Tregs/Tresps seems to be crucial for keeping patients in remission, where their limited production of proliferating resting MN-Tregs may be responsible for the occurrence of active disease flares. Full article
(This article belongs to the Special Issue Cell Biomarkers in Lupus: Value for Diagnostic and Drug Therapy)
Show Figures

Figure 1

Back to TopTop