Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = TiO2 nanoribbons/nanosheets

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 4081 KiB  
Article
Solvothermally Synthesized Hierarchical Aggregates of Anatase TiO2 Nanoribbons/Nanosheets and Their Photocatalytic–Photocurrent Activities
by Kadhim Al-Attafi, Hamza A. Mezher, Ali Faraj Hammadi, Amar Al-Keisy, Sameh Hamzawy, Hamzeh Qutaish and Jung Ho Kim
Nanomaterials 2023, 13(13), 1940; https://doi.org/10.3390/nano13131940 - 26 Jun 2023
Cited by 11 | Viewed by 2849
Abstract
Hierarchical aggregates of anatase TiO2 nanoribbons/nanosheets (TiO2-NR) and anatase TiO2 nanoparticles (TiO2-NP) were produced through a one-step solvothermal reaction using acetic acid or ethanol and titanium isopropoxide as solvothermal reaction systems. The crystalline structure, crystalline phase, and [...] Read more.
Hierarchical aggregates of anatase TiO2 nanoribbons/nanosheets (TiO2-NR) and anatase TiO2 nanoparticles (TiO2-NP) were produced through a one-step solvothermal reaction using acetic acid or ethanol and titanium isopropoxide as solvothermal reaction systems. The crystalline structure, crystalline phase, and morphologies of synthesized materials were characterized using several techniques. According to our findings, both TiO2-NR and TiO2-NP were found to have polycrystalline structures, with pure anatase phases. TiO2-NR has a three-dimensional hierarchical structure made up of aggregates of TiO2 nanoribbons/nanosheets, while TiO2-NP has a nanoparticulate structure. The photocatalytic and photocurrent activities for TiO2-NR and TiO2-NP were investigated and compared with the widely used commercial TiO2 (P25), which consists of anatase/rutile TiO2 nanoparticles, as a reference material. Our findings showed that TiO2-NR has higher photocatalytic and photocurrent performance than TiO2-NP, which are both, in turn, higher than those of P25. Our developed solvothermal method was shown to produce a pure anatase TiO2 phase for both synthesized structures, without using any surfactants or any other assisted templates. This developed solvothermal approach, and its anatase TiO2 nanostructure output, has promising potential for a wide range of energy harvesting applications, such as water pollution treatment and solar cells. Full article
Show Figures

Figure 1

16 pages, 3558 KiB  
Article
Vertical Growth of WO3 Nanosheets on TiO2 Nanoribbons as 2D/1D Heterojunction Photocatalysts with Improved Photocatalytic Performance under Visible Light
by Ling Wang, Keyi Xu, Hongwang Tang and Lianwen Zhu
Catalysts 2023, 13(3), 556; https://doi.org/10.3390/catal13030556 - 9 Mar 2023
Cited by 4 | Viewed by 2341
Abstract
We report the construction of 2D/1D heterojunction photocatalysts through the hydrothermal growth of WO3 nanosheets on TiO2 nanoribbons for the first time. Two-dimensional WO3 nanosheets were vertically arrayed on the surface of TiO2 nanoribbons, and the growth density could [...] Read more.
We report the construction of 2D/1D heterojunction photocatalysts through the hydrothermal growth of WO3 nanosheets on TiO2 nanoribbons for the first time. Two-dimensional WO3 nanosheets were vertically arrayed on the surface of TiO2 nanoribbons, and the growth density could be simply controlled by adjusting the concentration of the precursors. The construction of WO3/TiO2 heterojunctions not only decreases the band gap energy of TiO2 from 3.12 to 2.30 eV and broadens the photoresponse range from the UV region to the visible light region but also significantly reduces electron–hole pair recombination and enhances photo-generated carrier separation. Consequently, WO3/TiO2 heterostructures exhibit improved photocatalytic activity compared to pure WO3 nanosheets and TiO2 nanoribbons upon visible light irradiation. WO3/TiO2-25 possesses the highest photocatalytic activity and can remove 92.8% of RhB pollutants in 120 min. Both further increase and decrease in the growth density of WO3 nanosheets result in an obvious reduction in photocatalytic activity. The kinetic studies confirmed that the photocatalytic degradation of RhB follows the kinetics of the pseudo-first-order model. The present study demonstrates that the prepared WO3/TiO2 2D/1D heterostructures are promising materials for photocatalytic removal of organic pollutants to produce clean water. Full article
(This article belongs to the Special Issue Advances in Heterojunction Photocatalysts)
Show Figures

Graphical abstract

Back to TopTop