Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = TiB bunches

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 5429 KB  
Article
Laser Beam Welding of a Ti-15Mo/TiB Metal–Matrix Composite
by Maxim Ozerov, Elizaveta Povolyaeva, Nikita Stepanov, Volker Ventzke, René Dinse, Nikolai Kashaev and Sergey Zherebtsov
Metals 2021, 11(3), 506; https://doi.org/10.3390/met11030506 - 18 Mar 2021
Cited by 17 | Viewed by 3084
Abstract
A Ti-15Mo/TiB metal–matrix composite was produced by spark plasma sintering at 1400 °C. The fractions of the elements in the initial powder mixture were 80.75 wt.% Ti, 14.25 wt.% Mo, and 5 wt.% TiB2. The initial structure of the synthesized composite [...] Read more.
A Ti-15Mo/TiB metal–matrix composite was produced by spark plasma sintering at 1400 °C. The fractions of the elements in the initial powder mixture were 80.75 wt.% Ti, 14.25 wt.% Mo, and 5 wt.% TiB2. The initial structure of the synthesized composite was composed of bcc β titanium matrix and needle-like TiB reinforcements with an average thickness of 500 ± 300 nm. Microstructure and mechanical properties of the composite were studied after laser beam welding (LBW) was carried out at room temperature or various pre-heating temperatures: 200, 400, or 600 °C. The quality of laser beam welded joints was not found to be dependent noticeably on the pre-heating temperature; all welds consisted of pores the size of which reached 200–300 µm. In contrast to acicular individual particles in the base material, TiB whiskers in the weld zone were found to have a form of bunches. The maximum microhardness in the weld zone (~700 HV) was obtained after welding at room temperature or at 200 °C; this value was ~200 HV higher than that in the base material. Full article
(This article belongs to the Special Issue Advances in Lightweight Metal Matrix Composites)
Show Figures

Figure 1

13 pages, 1282 KB  
Article
Harmonic Mode-Locked Fiber Laser based on Photonic Crystal Fiber Filled with Topological Insulator Solution
by Yu-Shan Chen, Pei-Guang Yan, Hao Chen, Ai-Jiang Liu and Shuang-Chen Ruan
Photonics 2015, 2(2), 342-354; https://doi.org/10.3390/photonics2020342 - 3 Apr 2015
Cited by 10 | Viewed by 8253
Abstract
We reported that the photonic crystal fiber (PCF) filled with TI:Bi2Te3 nanosheets solution could act as an effective saturable absorber (SA). Employing this TI-PCF SA device; we constructed an ytterbium-doped all-fiber laser oscillator and achieved the evanescent wave mode-locking operation. [...] Read more.
We reported that the photonic crystal fiber (PCF) filled with TI:Bi2Te3 nanosheets solution could act as an effective saturable absorber (SA). Employing this TI-PCF SA device; we constructed an ytterbium-doped all-fiber laser oscillator and achieved the evanescent wave mode-locking operation. Due to the large cavity dispersion; the fundamental mode-locking pulse had the large full width at half maximum (FWHM) of 2.33 ns with the repetition rate of ~1.11 MHz; and the radio frequency (RF) spectrum with signal-to-noise ratio (SNR) of 61 dB. In addition; the transition dynamics from a bunched state of pulses to harmonic mode-locking (HML) was also observed; which was up to 26th order. Full article
Show Figures

Figure 1

Back to TopTop