Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Tchebichef moment invariants

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 125054 KiB  
Article
Seismic Image Identification and Detection Based on Tchebichef Moment Invariant
by Andong Lu and Barmak Honarvar Shakibaei Asli
Electronics 2023, 12(17), 3692; https://doi.org/10.3390/electronics12173692 - 31 Aug 2023
Cited by 6 | Viewed by 2919
Abstract
The research focuses on the analysis of seismic data, specifically targeting the detection, edge segmentation, and classification of seismic images. These processes are fundamental in image processing and are crucial in understanding the stratigraphic structure and identifying oil and natural gas resources. However, [...] Read more.
The research focuses on the analysis of seismic data, specifically targeting the detection, edge segmentation, and classification of seismic images. These processes are fundamental in image processing and are crucial in understanding the stratigraphic structure and identifying oil and natural gas resources. However, there is a lack of sufficient resources in the field of seismic image detection, and interpreting 2D seismic image slices based on 3D seismic data sets can be challenging. In this research, image segmentation involves image preprocessing and the use of a U-net network. Preprocessing techniques, such as Gaussian filter and anisotropic diffusion, are employed to reduce blur and noise in seismic images. The U-net network, based on the Canny descriptor is used for segmentation. For image classification, the ResNet-50 and Inception-v3 models are applied to classify different types of seismic images. In image detection, Tchebichef invariants are computed using the Tchebichef polynomials’ recurrence relation. These invariants are then used in an optimized multi-class SVM network for detecting and classifying various types of seismic images. The promising results of the SVM model based on Tchebichef invariants suggest its potential to replace Hu moment invariants (HMIs) and Zernike moment invariants (ZMIs) for seismic image detection. This approach offers a more efficient and dependable solution for seismic image analysis in the future. Full article
Show Figures

Figure 1

19 pages, 1961 KiB  
Article
A Fire Detection Algorithm Based on Tchebichef Moment Invariants and PSO-SVM
by Yongming Bian, Meng Yang, Xuying Fan and Yuchao Liu
Algorithms 2018, 11(6), 79; https://doi.org/10.3390/a11060079 - 25 May 2018
Cited by 17 | Viewed by 5453
Abstract
Automatic fire detection, which can detect and raise the alarm for fire early, is expected to help reduce the loss of life and property as much as possible. Due to its advantages over traditional methods, image processing technology has been applied gradually in [...] Read more.
Automatic fire detection, which can detect and raise the alarm for fire early, is expected to help reduce the loss of life and property as much as possible. Due to its advantages over traditional methods, image processing technology has been applied gradually in fire detection. In this paper, a novel algorithm is proposed to achieve fire image detection, combined with Tchebichef (sometimes referred to as Chebyshev) moment invariants (TMIs) and particle swarm optimization-support vector machine (PSO-SVM). According to the correlation between geometric moments and Tchebichef moments, the translation, rotation, and scaling (TRS) invariants of Tchebichef moments are obtained first. Then, the TMIs of candidate images are calculated to construct feature vectors. To gain the best detection performance, a PSO-SVM model is proposed, where the kernel parameter and penalty factor of support vector machine (SVM) are optimized by particle swarm optimization (PSO). Then, the PSO-SVM model is utilized to identify the fire images. Compared with algorithms based on Hu moment invariants (HMIs) and Zernike moment invariants (ZMIs), the experimental results show that the proposed algorithm can improve the detection accuracy, achieving the highest detection rate of 98.18%. Moreover, it still exhibits the best performance even if the size of the training sample set is small and the images are transformed by TRS. Full article
Show Figures

Figure 1

Back to TopTop