Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = TSAER

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2468 KiB  
Article
Temperature State Awareness-Based Energy-Saving Routing Protocol for Wireless Body Area Network
by Yu Mu, Guoqiang Zheng, Xintong Wang, Mengting Zhu and Huahong Ma
Appl. Sci. 2025, 15(13), 7477; https://doi.org/10.3390/app15137477 - 3 Jul 2025
Viewed by 288
Abstract
As an emerging information technology, Wireless Body Area Networks (WBANs) provide a lot of convenience for the development of the medical field. A WBAN is composed of many miniature sensor nodes in the form of an ad hoc network, which can realize remote [...] Read more.
As an emerging information technology, Wireless Body Area Networks (WBANs) provide a lot of convenience for the development of the medical field. A WBAN is composed of many miniature sensor nodes in the form of an ad hoc network, which can realize remote medical monitoring. However, the data transmission between sensor nodes in the WBAN not only consumes the energy of the node but also causes the temperature of the node to rise, thereby causing human tissue damage. Therefore, in response to the energy consumption problem in the Wireless Body Area Network and the hot node problem in the transmission path, this paper proposes a temperature state awareness-based energy-saving routing protocol (TSAER). The protocol senses the temperature state of nodes and then calculates the data receiving probability of nodes in different temperature state intervals. A benefit function based on several parameters such as the residual energy of the node, the distance to sink, and the probability of receiving data was constructed. The neighbor node with the maximum benefit function was selected as the best forwarding node, and the data was forwarded. The simulation results show that compared with the existing M-ATTEPMT and iM-SIMPLE protocols, TSAER effectively prolongs the network lifetime and controls the formation of hot nodes in the network. Full article
Show Figures

Figure 1

Back to TopTop