Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = TIM chaperones

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1094 KB  
Review
Mitochondrial Protein Homeostasis and Cardiomyopathy
by Emily Wachoski-Dark, Tian Zhao, Aneal Khan, Timothy E. Shutt and Steven C. Greenway
Int. J. Mol. Sci. 2022, 23(6), 3353; https://doi.org/10.3390/ijms23063353 - 20 Mar 2022
Cited by 33 | Viewed by 6016
Abstract
Human mitochondrial disorders impact tissues with high energetic demands and can be associated with cardiac muscle disease (cardiomyopathy) and early mortality. However, the mechanistic link between mitochondrial disease and the development of cardiomyopathy is frequently unclear. In addition, there is often marked phenotypic [...] Read more.
Human mitochondrial disorders impact tissues with high energetic demands and can be associated with cardiac muscle disease (cardiomyopathy) and early mortality. However, the mechanistic link between mitochondrial disease and the development of cardiomyopathy is frequently unclear. In addition, there is often marked phenotypic heterogeneity between patients, even between those with the same genetic variant, which is also not well understood. Several of the mitochondrial cardiomyopathies are related to defects in the maintenance of mitochondrial protein homeostasis, or proteostasis. This essential process involves the importing, sorting, folding and degradation of preproteins into fully functional mature structures inside mitochondria. Disrupted mitochondrial proteostasis interferes with mitochondrial energetics and ATP production, which can directly impact cardiac function. An inability to maintain proteostasis can result in mitochondrial dysfunction and subsequent mitophagy or even apoptosis. We review the known mitochondrial diseases that have been associated with cardiomyopathy and which arise from mutations in genes that are important for mitochondrial proteostasis. Genes discussed include DnaJ heat shock protein family member C19 (DNAJC19), mitochondrial import inner membrane translocase subunit TIM16 (MAGMAS), translocase of the inner mitochondrial membrane 50 (TIMM50), mitochondrial intermediate peptidase (MIPEP), X-prolyl-aminopeptidase 3 (XPNPEP3), HtraA serine peptidase 2 (HTRA2), caseinolytic mitochondrial peptidase chaperone subunit B (CLPB) and heat shock 60-kD protein 1 (HSPD1). The identification and description of disorders with a shared mechanism of disease may provide further insights into the disease process and assist with the identification of potential therapeutics. Full article
(This article belongs to the Special Issue Recent Advances on Mitochondrial Diseases)
Show Figures

Figure 1

13 pages, 1624 KB  
Review
Biogenesis of Mitochondrial Metabolite Carriers
by Patrick Horten, Lilia Colina-Tenorio and Heike Rampelt
Biomolecules 2020, 10(7), 1008; https://doi.org/10.3390/biom10071008 - 7 Jul 2020
Cited by 37 | Viewed by 6666
Abstract
Metabolite carriers of the mitochondrial inner membrane are crucial for cellular physiology since mitochondria contribute essential metabolic reactions and synthesize the majority of the cellular ATP. Like almost all mitochondrial proteins, carriers have to be imported into mitochondria from the cytosol. Carrier precursors [...] Read more.
Metabolite carriers of the mitochondrial inner membrane are crucial for cellular physiology since mitochondria contribute essential metabolic reactions and synthesize the majority of the cellular ATP. Like almost all mitochondrial proteins, carriers have to be imported into mitochondria from the cytosol. Carrier precursors utilize a specialized translocation pathway dedicated to the biogenesis of carriers and related proteins, the carrier translocase of the inner membrane (TIM22) pathway. After recognition and import through the mitochondrial outer membrane via the translocase of the outer membrane (TOM) complex, carrier precursors are ushered through the intermembrane space by hexameric TIM chaperones and ultimately integrated into the inner membrane by the TIM22 carrier translocase. Recent advances have shed light on the mechanisms of TOM translocase and TIM chaperone function, uncovered an unexpected versatility of the machineries, and revealed novel components and functional crosstalk of the human TIM22 translocase. Full article
(This article belongs to the Special Issue Mitochondrial Transport Proteins)
Show Figures

Figure 1

21 pages, 1091 KB  
Review
Folding and Biogenesis of Mitochondrial Small Tim Proteins
by Efrain Ceh-Pavia, Michael P. Spiller and Hui Lu
Int. J. Mol. Sci. 2013, 14(8), 16685-16705; https://doi.org/10.3390/ijms140816685 - 13 Aug 2013
Cited by 20 | Viewed by 10369
Abstract
Correct and timely folding is critical to the function of all proteins. The importance of this is illustrated in the biogenesis of the mitochondrial intermembrane space (IMS) “small Tim” proteins. Biogenesis of the small Tim proteins is regulated by dedicated systems or pathways, [...] Read more.
Correct and timely folding is critical to the function of all proteins. The importance of this is illustrated in the biogenesis of the mitochondrial intermembrane space (IMS) “small Tim” proteins. Biogenesis of the small Tim proteins is regulated by dedicated systems or pathways, beginning with synthesis in the cytosol and ending with assembly of individually folded proteins into functional complexes in the mitochondrial IMS. The process is mostly centered on regulating the redox states of the conserved cysteine residues: oxidative folding is crucial for protein function in the IMS, but oxidized (disulfide bonded) proteins cannot be imported into mitochondria. How the redox-sensitive small Tim precursor proteins are maintained in a reduced, import-competent form in the cytosol is not well understood. Recent studies suggest that zinc and the cytosolic thioredoxin system play a role in the biogenesis of these proteins. In the IMS, the mitochondrial import and assembly (MIA) pathway catalyzes both import into the IMS and oxidative folding of the small Tim proteins. Finally, assembly of the small Tim complexes is a multistep process driven by electrostatic and hydrophobic interactions; however, the chaperone function of the complex might require destabilization of these interactions to accommodate the substrate. Here, we review how folding of the small Tim proteins is regulated during their biogenesis, from maintenance of the unfolded precursors in the cytosol, to their import, oxidative folding, complex assembly and function in the IMS. Full article
(This article belongs to the Special Issue Protein Folding)
Show Figures

13 pages, 514 KB  
Article
The Mitochondrial Protein Translocation Motor: Structural Conservation between the Human and Yeast Tim14/Pam18-Tim16/Pam16 co-Chaperones
by Shira Elsner, Dana Simian, Ohad Iosefson, Milit Marom and Abdussalam Azem
Int. J. Mol. Sci. 2009, 10(5), 2041-2053; https://doi.org/10.3390/ijms10052041 - 6 May 2009
Cited by 18 | Viewed by 10494
Abstract
Most of our knowledge regarding the process of protein import into mitochondria has come from research employing Saccharomyces cerevisiae as a model system. Recently, several mammalian homologues of the mitochondrial motor proteins were identified. Of particular interest for us is the human Tim14/Pam18-Tim16/Pam16 [...] Read more.
Most of our knowledge regarding the process of protein import into mitochondria has come from research employing Saccharomyces cerevisiae as a model system. Recently, several mammalian homologues of the mitochondrial motor proteins were identified. Of particular interest for us is the human Tim14/Pam18-Tim16/Pam16 complex. We chose a structural approach in order to examine the evolutionary conservation between yeast Tim14/Pam18-Tim16/Pam16 proteins and their human homologues. For this purpose, we examined the structural properties of the purified human proteins and their interaction with their yeast homologues, in vitro. Our results show that the soluble domains of the human Tim14/Pam18 and Tim16/Pam16 proteins interact with their yeast counterparts, forming heterodimeric complexes and that these complexes interact with yeast mtHsp70. Full article
(This article belongs to the Special Issue Protein Folding 2009)
Show Figures

Back to TopTop