Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = Subtercola vilae

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1834 KiB  
Article
Systematic Affiliation and Genome Analysis of Subtercola vilae DB165T with Particular Emphasis on Cold Adaptation of an Isolate from a High-Altitude Cold Volcano Lake
by Alvaro S. Villalobos, Jutta Wiese, Johannes F. Imhoff, Cristina Dorador, Alexander Keller and Ute Hentschel
Microorganisms 2019, 7(4), 107; https://doi.org/10.3390/microorganisms7040107 - 23 Apr 2019
Cited by 4 | Viewed by 4229
Abstract
Among the Microbacteriaceae the species of Subtercola and Agreia form closely associated clusters. Phylogenetic analysis demonstrated three major phylogenetic branches of these species. One of these branches contains the two psychrophilic species Subtercola frigoramans and Subtercola vilae, together with a larger number [...] Read more.
Among the Microbacteriaceae the species of Subtercola and Agreia form closely associated clusters. Phylogenetic analysis demonstrated three major phylogenetic branches of these species. One of these branches contains the two psychrophilic species Subtercola frigoramans and Subtercola vilae, together with a larger number of isolates from various cold environments. Genomic evidence supports the separation of Agreia and Subtercola species. In order to gain insight into the ability of S. vilae to adapt to life in this extreme environment, we analyzed the genome with a particular focus on properties related to possible adaptation to a cold environment. General properties of the genome are presented, including carbon and energy metabolism, as well as secondary metabolite production. The repertoire of genes in the genome of S. vilae DB165T linked to adaptations to the harsh conditions found in Llullaillaco Volcano Lake includes several mechanisms to transcribe proteins under low temperatures, such as a high number of tRNAs and cold shock proteins. In addition, S. vilae DB165T is capable of producing a number of proteins to cope with oxidative stress, which is of particular relevance at low temperature environments, in which reactive oxygen species are more abundant. Most important, it obtains capacities to produce cryo-protectants, and to combat against ice crystal formation, it produces ice-binding proteins. Two new ice-binding proteins were identified which are unique to S. vilae DB165T. These results indicate that S. vilae has the capacity to employ different mechanisms to live under the extreme and cold conditions prevalent in Llullaillaco Volcano Lake. Full article
(This article belongs to the Special Issue Towards Integrated Multi-omics Analyses of Environmental Microbiota)
Show Figures

Figure 1

Back to TopTop