Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = Streptomyces sp. NEAU-HV9

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1277 KiB  
Article
A Streptomyces sp. NEAU-HV9: Isolation, Identification, and Potential as a Biocontrol Agent against Ralstonia solanacearum of Tomato Plants
by Ling Ling, Xiaoyang Han, Xiao Li, Xue Zhang, Han Wang, Lida Zhang, Peng Cao, Yutong Wu, Xiangjing Wang, Junwei Zhao and Wensheng Xiang
Microorganisms 2020, 8(3), 351; https://doi.org/10.3390/microorganisms8030351 - 1 Mar 2020
Cited by 59 | Viewed by 6480
Abstract
Ralstonia solanacearum is an important soil-borne bacterial plant pathogen. In this study, an actinomycete strain named NEAU-HV9 that showed strong antibacterial activity against Ralstonia solanacearum was isolated from soil using an in vitro screening technique. Based on physiological and morphological characteristics and 98.90% [...] Read more.
Ralstonia solanacearum is an important soil-borne bacterial plant pathogen. In this study, an actinomycete strain named NEAU-HV9 that showed strong antibacterial activity against Ralstonia solanacearum was isolated from soil using an in vitro screening technique. Based on physiological and morphological characteristics and 98.90% of 16S rRNA gene sequence similarity with Streptomyces panaciradicis 1MR-8T, the strain was identified as a member of the genus Streptomyces. Tomato seedling and pot culture experiments showed that after pre-inoculation with the strain NEAU-HV9, the disease occurrence of tomato seedlings was effectively prevented for R. solanacearum. Then, a bioactivity-guided approach was employed to isolate and determine the chemical identity of bioactive constituents with antibacterial activity from strain NEAU-HV9. The structure of the antibacterial metabolite was determined as actinomycin D on the basis of extensive spectroscopic analysis. To our knowledge, this is the first report that actinomycin D has strong antibacterial activity against R. solanacearum with a MIC (minimum inhibitory concentration) of 0.6 mg L−1 (0.48 μmol L−1). The in vivo antibacterial activity experiment showed that actinomycin D possessed significant preventive efficacy against R. solanacearum in tomato seedlings. Thus, strain NEAU-HV9 could be used as BCA (biological control agent) against R. solanacearum, and actinomycin D might be a promising candidate for a new antibacterial agent against R. solanacearum. Full article
Show Figures

Figure 1

Back to TopTop