Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = SpraySyn burner

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 8010 KiB  
Article
On the Formation of Carbonaceous By-Product Species in Spray Flame Synthesis of Maghemite Nanoparticles
by Ricardo Tischendorf, Kristina Duschik, Fabian Fröde, Manuel Reddemann, Reinhold Kneer, Heinz Pitsch, Mirko Schaper and Hans-Joachim Schmid
Appl. Sci. 2025, 15(6), 3294; https://doi.org/10.3390/app15063294 - 18 Mar 2025
Viewed by 420
Abstract
This study investigates the formation of by-product species during flame spray synthesis (SFS) of superparamagnetic maghemite (γ-Fe2O3) nanoparticles. Four samples are synthesized by utilizing two standardized burner types (SpraySyn1 and SpraySyn2) and varying the iron (III) nonahydrate (INN) concentration [...] Read more.
This study investigates the formation of by-product species during flame spray synthesis (SFS) of superparamagnetic maghemite (γ-Fe2O3) nanoparticles. Four samples are synthesized by utilizing two standardized burner types (SpraySyn1 and SpraySyn2) and varying the iron (III) nonahydrate (INN) concentration (0.1 M and 0.2 M) in the precursor feed while using ethanol and 2-ethylhexanoic acid as solvent. Conducting complementary powder analysis revealed a predominant presence of carboxylates and carbonates as by-product species (~14–18 wt.%), while no strong indications for elemental carbon and precursor/solvent residues can be found. Carbonates/carboxylates are located on particle surfaces, and the particles’ surface loadings by these species are independent of the precursor concentration but depend on burner type, with SpraySyn2 exhibiting lower values, indicating a more complete combustion for this burner. Through time-resolved thermophoretic sampling, we further demonstrate that carbon forms temporally in the visible flame center when using SpraySyn1. Since carbon solely forms momentarily within large flame pulses and decomposes further downstream, its temporal formation is of minor relevance for the final particle purity. However, its local co-existence aside from γ-Fe2O3 in the flame has potential to bias in situ diagnostics. Full article
Show Figures

Figure 1

14 pages, 26291 KiB  
Article
Production of Carbon Black in Turbulent Spray Flames of Coal Tar Distillates
by Helena Rodriguez-Fernandez, Shruthi Dasappa, Kaylin Dones Sabado and Joaquin Camacho
Appl. Sci. 2021, 11(21), 10001; https://doi.org/10.3390/app112110001 - 26 Oct 2021
Cited by 11 | Viewed by 4012
Abstract
Conventional carbon black production occurs by pyrolysis after heavy aromatic feedstock is injected into the post-combustor region of furnace black reactors. The current work examines the conversion of the coal tar distillate in turbulent spray flames to demonstrate a more compact reactor configuration. [...] Read more.
Conventional carbon black production occurs by pyrolysis after heavy aromatic feedstock is injected into the post-combustor region of furnace black reactors. The current work examines the conversion of the coal tar distillate in turbulent spray flames to demonstrate a more compact reactor configuration. Coal tar distillates diluted in toluene is atomized and burned in a standardized flame spray synthesis configuration, known as SpraySyn. Flame conditions are characterized by thermocouple, soot pyrometry and image analysis and product particle properties are examined by TEM and Raman spectroscopy. The measured flame temperature corresponds to the range of temperatures used in the furnace black process, but the current synthesis includes oxidizing conditions and faster residence times. The resulting carbon black particles are aggregates with primary particle sizes on the small end of the carbon black size spectrum, according to analysis of TEM images. Carbon black, formed under a range of flame temperatures, show Raman spectra with features resembling typical carbon black materials. Conversion of coal tar distillate to carbon black by direct flame synthesis may be a scalable method to produce high-surface area grades without a conventional pyrolysis reactor stage. Full article
Show Figures

Graphical abstract

Back to TopTop