Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Soviet chinchilla rabbits

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 520 KiB  
Article
Hemodynamic and Morpho-Biochemical Parameters of Rabbit Blood After Injection of Enzyme Preparations
by V. G. Vertiprakhov, N. A. Sergeenkova, S. V. Karamushkina and B. Sh. Dashieva
Biomolecules 2025, 15(7), 1049; https://doi.org/10.3390/biom15071049 - 18 Jul 2025
Viewed by 380
Abstract
The anti-inflammatory effect of trypsin in animals and humans is the basis for the development of new veterinary and medical drugs and alternatives to antibiotics. The current experiment analyzed the effect of pig pancreatic tissue lyophilizate and crystalline trypsin on the hemodynamic and [...] Read more.
The anti-inflammatory effect of trypsin in animals and humans is the basis for the development of new veterinary and medical drugs and alternatives to antibiotics. The current experiment analyzed the effect of pig pancreatic tissue lyophilizate and crystalline trypsin on the hemodynamic and morpho-biochemical parameters of rabbit blood. The experiments were carried out on 20 rabbits of the Soviet chinchilla breed of 6–8 months of age. Animals were intramuscularly injected with sterile solution of 0.9% NaCl in 0.5 mL (group 1, n = 5), sterile solution of crystalline trypsin in 0.9% NaCl at a concentration of 0.25 mg/kg body weight (group 2, n = 5), sterile solution of crystalline trypsin in 0, 9% NaCl at a concentration of 0.5 mg/kg body weight (group 3, n = 5), or sterile suspension of pig pancreas lyophilizate at a concentration of 1 mg/kg body weight (group 4, n = 5). Animals were injected once daily for five consecutive days. Significant changes in arterial blood pressure, serum enzymes activity, and the count of various blood cellular components were induced by the administration of different trypsin preparations. All data obtained indicate the presence of a biologically active substance in the lyophilizate, the effect of which requires further animal studies to create a prototype for the development of new drugs for human and animal use. Full article
(This article belongs to the Special Issue Digestive Enzymes in Health and Disease)
Show Figures

Figure 1

14 pages, 23082 KiB  
Article
Patterned Drug-Eluting Coatings for Tracheal Stents Based on PLA, PLGA, and PCL for the Granulation Formation Reduction: In Vivo Studies
by Olga A. Sindeeva, Ekaterina S. Prikhozhdenko, Igor Schurov, Nikolay Sedykh, Sergey Goriainov, Arfenya Karamyan, Ekaterina A. Mordovina, Olga A. Inozemtseva, Valeriya Kudryavtseva, Leonid E. Shchesnyak, Rimma A. Abramovich, Sergey Mikhajlov and Gleb B. Sukhorukov
Pharmaceutics 2021, 13(9), 1437; https://doi.org/10.3390/pharmaceutics13091437 - 9 Sep 2021
Cited by 31 | Viewed by 6221
Abstract
Expandable metallic stent placement is often the only way to treat airway obstructions. Such treatment with an uncoated stent causes granulation proliferation and subsequent restenosis, resulting in the procedure’s adverse complications. Systemic administration of steroids drugs in high dosages slows down granulation tissue [...] Read more.
Expandable metallic stent placement is often the only way to treat airway obstructions. Such treatment with an uncoated stent causes granulation proliferation and subsequent restenosis, resulting in the procedure’s adverse complications. Systemic administration of steroids drugs in high dosages slows down granulation tissue overgrowth but leads to long-term side effects. Drug-eluting coatings have been used widely in cardiology for many years to suppress local granulation and reduce the organism’s systemic load. Still, so far, there are no available analogs for the trachea. Here, we demonstrate that PLA-, PCL- and PLGA-based films with arrays of microchambers to accommodate therapeutic substances can be used as a drug-eluting coating through securely fixing on the surface of an expandable nitinol stent. PCL and PLA were most resistant to mechanical damage associated with packing in delivery devices and making it possible to keep high-molecular-weight cargo. Low-molecular-weight methylprednisolone sodium succinate is poorly retained in PCL- and PLGA-based microchambers after immersion in deionized water (only 9.5% and 15.7% are left, respectively). In comparison, PLA-based microchambers retain 96.3% after the same procedure. In vivo studies on rabbits have shown that effective granulation tissue suppression is achieved when PLA and PLGA are used for coatings. PLGA-based microchamber coating almost completely degrades in 10 days in the trachea, while PLA-based microchamber films partially preserve their structure. The PCL-based film coating is most stable over time, which probably causes blocking the outflow of fluid from the tracheal mucosa and the aggravation of the inflammatory process against the background of low drug concentration. Combination and variability of polymers in the fabrication of films with microchambers to retain therapeutic compounds are suggested as a novel type of drug-eluting coating. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Figure 1

Back to TopTop