Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = Skye sand

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3737 KiB  
Article
Prototype Experiments Assessing Arsenic and Iron Removal Efficiencies through Adsorption Using Natural Skye Sand
by Shahnoor Alam Khan and Monzur Alam Imteaz
Water 2023, 15(4), 785; https://doi.org/10.3390/w15040785 - 17 Feb 2023
Cited by 1 | Viewed by 2465
Abstract
Based on earlier batch and column experimental results, it was established that Skye sand is suitable for removing arsenic from water through adsorption. As a real-size prototype may not always replicate results from batch and column experiments, this paper presents experimental results on [...] Read more.
Based on earlier batch and column experimental results, it was established that Skye sand is suitable for removing arsenic from water through adsorption. As a real-size prototype may not always replicate results from batch and column experiments, this paper presents experimental results on arsenic removal through a prototype arsenic filter using the same Skye sand used in the batch and column experiments. As arsenic-contaminated water is often associated with a high concentration of iron, which causes blockage of the filter system, this study also investigates the removal of iron from the water through the same filter media. First, several physical properties of the Skye sand were established through XRF, XRD, SEM and EDX analyses. Then, a real-size prototype was made based on an earlier design of a similar filter made of iron oxide-coated sand (IOCS). It was found that the current filter is capable of removing arsenic consistently to a level below the detection limit (0.05 µg/L) for a considerable period (up to 150 bed volumes). Additionally, the same filter is capable of removing iron to a level below the WHO-acceptable limit (0.3 mg/L). Analytical calculation suggests that the current prototype filter with Skye sand can produce arsenic-free water continuously for 600 days (100 L per day) with a feed arsenic concentration of 500 µg/L. Full article
(This article belongs to the Special Issue Water, Waste and Wastewater: Treatment and Resource Recovery)
Show Figures

Figure 1

Back to TopTop