Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Si-based blocked-impurity-band detector

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
6 pages, 1655 KiB  
Communication
The Anti-Reflection Coating Design for the Very-Long-Wave Infrared Si-Based Blocked Impurity Band Detectors
by Zuoru Dong, Yangzhou Zhou, Yulu Chen, Jiajia Tao, Wenhui Liu, Xiaowan Dai, Bingbing Wang, Yifei Wu and Xiaodong Wang
Crystals 2023, 13(1), 60; https://doi.org/10.3390/cryst13010060 - 29 Dec 2022
Cited by 5 | Viewed by 2314
Abstract
An anti-reflection coating on a back-illuminated 128 × 128 array Si-based blocked impurity band (BIB) detector in a very-long-wave infrared range was designed in this work. The reflectance and transmittance spectra of ZnS films with different thicknesses on intrinsic Si substrates were studied [...] Read more.
An anti-reflection coating on a back-illuminated 128 × 128 array Si-based blocked impurity band (BIB) detector in a very-long-wave infrared range was designed in this work. The reflectance and transmittance spectra of ZnS films with different thicknesses on intrinsic Si substrates were studied with a FDTD simulation and experiment. Compared to bare Si substrate, the reflectance of Si coated with 1.5, 2.0, 2.5, and 3.0 μm thick ZnS significantly decreased, while the transmittance increased in the range of 10.0~25.0 μm band. The transmittance enhancement ratio reached approximately 32%, 32%, 28%, and 29%, respectively. It was evidenced that the enhanced transmission at a specific wavelength was caused by the effective interference cancellation effect. Then, a 2.0 μm thick ZnS thin film was deposited on the backside of the 128 × 128 array Si-based BIB detector. The spectral responsivity of the detector increased significantly. Additionally, the blackbody responsivity increased by approximately 36%, suggesting that the ZnS film is an ideal anti-reflection material for VLWIR detectors in the range of 10.0~25.0 μm band. Full article
(This article belongs to the Special Issue Metal–Semiconductor Photodetector)
Show Figures

Figure 1

8 pages, 2416 KiB  
Communication
Wavelength Modulation Characteristics of Metal Gratings on Si-Based Blocked-Impurity-Band (BIB) Terahertz Detectors
by Yulu Chen, Zuoru Dong, Yangzhou Zhou, Jiajia Tao, Wulin Tong, Yifei Wu, Wenhui Liu, Bingbing Wang, Xiaowan Dai and Xiaodong Wang
Micromachines 2022, 13(5), 811; https://doi.org/10.3390/mi13050811 - 23 May 2022
Cited by 5 | Viewed by 2137
Abstract
In this work, the wavelength selection characteristics of metal gratings on Si-based blocked-impurity-band (BIB) detectors in the terahertz band were studied by performing experiments and a finite difference time domain (FDTD) simulation. The transmission spectra of metal gratings with different periods on 130 [...] Read more.
In this work, the wavelength selection characteristics of metal gratings on Si-based blocked-impurity-band (BIB) detectors in the terahertz band were studied by performing experiments and a finite difference time domain (FDTD) simulation. The transmission spectra of metal gratings with different periods on 130 μm intrinsic Si substrates were measured. When the metal grating period increased from 16 to 20 to 32 μm, the peak position of the spectrum moved from 21.71 to 24.50 to 36.59 μm, which is in good agreement with the FDTD simulation results. The structure with the period of 32 μm shows the best wavelength selective transmission characteristics. Then, the bare Si-based BIB devices and metal grating/Si-based BIB hybrid devices with different thicknesses of blocking layers of 2 and 5 μm were fabricated. By covering different periods of metal gratings for the devices with a thicker blocking layer of 2 μm, we obtained more effective wavelength selection characteristics and stronger response spectra enhancement ratios that were about 1.3, 2.4, or 1.9 times. This was mainly due to the localized optical field enhancement effect of the plasmons resonance in metal gratings, which decays exponentially in a vertical direction. Our results demonstrate a new approach for the Si-based BIB detector to realize multiband selective detection applications. Full article
(This article belongs to the Special Issue THz On-Chip Devices and Their Applications)
Show Figures

Figure 1

Back to TopTop