Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Sargassum binderi

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1755 KiB  
Review
Algae-Derived Anti-Inflammatory Compounds against Particulate Matters-Induced Respiratory Diseases: A Systematic Review
by Pek Xyen Tan, Krishnapriya Thiyagarasaiyar, Cheng-Yau Tan, You-Jin Jeon, Mohd Shahrul Mohd Nadzir, Yong-Jiang Wu, Liang-Ee Low, Atanas G. Atanasov, Long Chiau Ming, Kai Bin Liew, Bey-Hing Goh and Yoon-Yen Yow
Mar. Drugs 2021, 19(6), 317; https://doi.org/10.3390/md19060317 - 30 May 2021
Cited by 9 | Viewed by 5820
Abstract
Air pollution has recently become a subject of increasing concern in many parts of the world. The World Health Organization (WHO) estimated that nearly 4.2 million early deaths are due to exposure to fine particles in polluted air, which causes multiple respiratory diseases. [...] Read more.
Air pollution has recently become a subject of increasing concern in many parts of the world. The World Health Organization (WHO) estimated that nearly 4.2 million early deaths are due to exposure to fine particles in polluted air, which causes multiple respiratory diseases. Algae, as a natural product, can be an alternative treatment due to potential biofunctional properties and advantages. This systematic review aims to summarize and evaluate the evidence of metabolites derived from algae as potential anti-inflammatory agents against respiratory disorders induced by atmospheric particulate matter (PM). Databases such as Scopus, Web of Science, and PubMed were systematically searched for relevant published full articles from 2016 to 2020. The main key search terms were limited to “algae”, “anti-inflammation”, and “air pollutant”. The search activity resulted in the retrieval of a total of 36 publications. Nine publications are eligible for inclusion in this systematic review. A total of four brown algae (Ecklonia cava, Ishige okamurae, Sargassum binderi and Sargassum horneri) with phytosterol, polysaccharides and polyphenols were reported in the nine studies. The review sheds light on the pathways of particulate matter travelling into respiratory systems and causing inflammation, and on the mechanisms of actions of algae in inhibiting inflammation. Limitations and future directions are also discussed. More research is needed to investigate the potential of algae as anti-inflammatory agents against PM in in vivo and in vitro experimental models, as well as clinically. Full article
(This article belongs to the Special Issue Bioactive Compounds Derived from Marine Macrophytes)
Show Figures

Figure 1

12 pages, 11419 KiB  
Article
Purification and Structural Characterization of Sulfated Polysaccharides Derived from Brown Algae, Sargassum binderi: Inhibitory Mechanism of iNOS and COX-2 Pathway Interaction
by Jun-Geon Je, Hyo-Geun Lee, Kurukulasuriya H. N. Fernando, You-Jin Jeon and Bomi Ryu
Antioxidants 2021, 10(6), 822; https://doi.org/10.3390/antiox10060822 - 21 May 2021
Cited by 28 | Viewed by 4302
Abstract
Among the components derived from brown algae, anionic sulfated polysaccharides, which contain sulfated fucose as the major monosaccharide, exert significant biological activities. In this study, we purified and structurally characterized sulfated polysaccharides from brown algae, Sargassum binderi (S. binderi; SBPs), and [...] Read more.
Among the components derived from brown algae, anionic sulfated polysaccharides, which contain sulfated fucose as the major monosaccharide, exert significant biological activities. In this study, we purified and structurally characterized sulfated polysaccharides from brown algae, Sargassum binderi (S. binderi; SBPs), and evaluated their biological activity in vitro and in vivo. The SBPs were separated based on their charges and their biophysical properties were investigated according to their functional groups, structural features, and molecular weights using FTIR, NMR, and MALS. Among all the SBPs, Fraction 4 (SBP-F4), with an average molecular weight of 2.867 × 105 g/mol, had the highest polysaccharide and sulfate contents (75.15 ± 0.25% and 24.08 ± 0.18%, respectively). The biological activities of SBP-F4 were investigated further in vitro and in vivo. Our results showed that SBP-F4 significantly suppressed the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) proteins in LPS-activated macrophages. Moreover, in the LPS-treated zebrafish model, a significant decrease in cell death and NO production was observed. Collectively, these results show that SBPs not only exert protective effects against LPS-induced cytotoxicity but also inhibit the activation and anti-inflammatory activity of macrophages. Therefore, polysaccharides derived from S. binderi are potential anti-inflammatory agents for use in clinical settings. Full article
(This article belongs to the Special Issue Bioactive Extract Derived Marine Algae in Antioxidants)
Show Figures

Figure 1

Back to TopTop