Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = SRSim software

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
39 pages, 9966 KiB  
Article
Spatial Rule-Based Modeling: A Method and Its Application to the Human Mitotic Kinetochore
by Bashar Ibrahim, Richard Henze, Gerd Gruenert, Matthew Egbert, Jan Huwald and Peter Dittrich
Cells 2013, 2(3), 506-544; https://doi.org/10.3390/cells2030506 - 2 Jul 2013
Cited by 28 | Viewed by 9636
Abstract
A common problem in the analysis of biological systems is the combinatorial explosion that emerges from the complexity of multi-protein assemblies. Conventional formalisms, like differential equations, Boolean networks and Bayesian networks, are unsuitable for dealing with the combinatorial explosion, because they are designed [...] Read more.
A common problem in the analysis of biological systems is the combinatorial explosion that emerges from the complexity of multi-protein assemblies. Conventional formalisms, like differential equations, Boolean networks and Bayesian networks, are unsuitable for dealing with the combinatorial explosion, because they are designed for a restricted state space with fixed dimensionality. To overcome this problem, the rule-based modeling language, BioNetGen, and the spatial extension, SRSim, have been developed. Here, we describe how to apply rule-based modeling to integrate experimental data from different sources into a single spatial simulation model and how to analyze the output of that model. The starting point for this approach can be a combination of molecular interaction data, reaction network data, proximities, binding and diffusion kinetics and molecular geometries at different levels of detail. We describe the technique and then use it to construct a model of the human mitotic inner and outer kinetochore, including the spindle assembly checkpoint signaling pathway. This allows us to demonstrate the utility of the procedure, show how a novel perspective for understanding such complex systems becomes accessible and elaborate on challenges that arise in the formulation, simulation and analysis of spatial rule-based models. Full article
(This article belongs to the Special Issue Feature Papers 2013)
Show Figures

Graphical abstract

Back to TopTop