Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = SRF/RDF

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 1481 KiB  
Article
The Biological Drying of Municipal Waste in an Industrial Reactor—A Case Study
by Jolanta Latosińska, Maria Żygadło and Marlena Dębicka
Energies 2022, 15(3), 1039; https://doi.org/10.3390/en15031039 - 30 Jan 2022
Cited by 14 | Viewed by 3864
Abstract
One of the methods of municipal solid waste (MSW) treatment is biodrying. The literature describes mainly the results obtained in a laboratory- and a pilot-scale reactor. The manuscript presents the results of MSW treatment in a full-scale bio-drying reactor (150 m3). [...] Read more.
One of the methods of municipal solid waste (MSW) treatment is biodrying. The literature describes mainly the results obtained in a laboratory- and a pilot-scale reactor. The manuscript presents the results of MSW treatment in a full-scale bio-drying reactor (150 m3). The reactor is operated in one of the Polish installations specializing in mechanical-biological treatment (MBT). During the 14 day period of biodrying in the reactor, the parameters of MSW such as the moisture, temperature, loss on ignition (LOI), and net heating value (NHV) were examined. The temperature of the air in the reactor was also examined. The research also included changes in the above-mentioned parameters of MSW located in three parts of the reactor: the front, middle, and back. The test results showed that the moisture content of the waste decreased from the initial level of 55% to the level of 30%. This was accompanied by an increase in the NHV from 6.3 MJ kg−1 to 9.6 MJ kg−1. At the same time, the LOI decreased from 68% d.m. to 45% d.m. The LOI decrease is not favorable from the point of view of using MSW as refuse-derived fuel (RDF), as was expected in the final usage stage. The results have application value as the plant operator, having at their disposal the controlling of the reactor’s ventilation and the temperature inside the reactor, should select the speed of the moisture removal from MSW at such a level as to minimize the LOI decrease. Full article
Show Figures

Figure 1

12 pages, 2333 KiB  
Article
Experimental Study of Entrainment and Mixing of Renewable Active Particles in Fluidized Beds
by Botond Szucs, Mohamed Sobhi Alagha and Pal Szentannai
Appl. Sci. 2020, 10(12), 4268; https://doi.org/10.3390/app10124268 - 22 Jun 2020
Cited by 1 | Viewed by 2229
Abstract
Fluidized bed combustors were initially designed and built basically for the utilization of fossil fuels, mostly coal. The actual worldwide trend of transitioning from fossil fuels to renewables requires sufficient knowledge on the fluid mechanics of these new particle types because of the [...] Read more.
Fluidized bed combustors were initially designed and built basically for the utilization of fossil fuels, mostly coal. The actual worldwide trend of transitioning from fossil fuels to renewables requires sufficient knowledge on the fluid mechanics of these new particle types because of the significant differences in their shapes, sizes, densities, and homogeneities. This article presents experimental results on the particle entrainment and mixing of some industrially relevant fuels such as solid refused fuel/refuse derived fuel (SRF/RDF), bark, sunflower shell, and wheat shell. The measurements were performed on a lab-scale fluidized bed experimental facility. The results show that sunflower shell is entrained in the highest degree; however, at very low velocity, the entrainment of wheat shell is the most intensive. The entrainment behaviors of the investigated SRF and bark samples are similar. On the other hand, the mixing results showed that the SRF has relatively high mass fractions in the bottom and centeral regions of the fluidized bed at low superficial velocities, while at elevated velocities, the entire mass of this fuel is shifted upwards. Interestingly, just the opposite tendency can be observed in cases of all other investigated biomass fuels. Finally, the nonspherical renewable active particles have markedly higher concentrations in the bottom region of the bed compared to spherical ones. Full article
(This article belongs to the Special Issue Thermal Utilization of Fuels)
Show Figures

Figure 1

Back to TopTop