Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = SERCA2a microdomain

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4074 KiB  
Article
Phosphodiesterases 4B and 4D Differentially Regulate cAMP Signaling in Calcium Handling Microdomains of Mouse Hearts
by Axel E. Kraft, Nadja I. Bork, Hariharan Subramanian, Nikoleta Pavlaki, Antonio V. Failla, Bernd Zobiak, Marco Conti and Viacheslav O. Nikolaev
Cells 2024, 13(6), 476; https://doi.org/10.3390/cells13060476 - 8 Mar 2024
Cited by 4 | Viewed by 2623
Abstract
The ubiquitous second messenger 3′,5′-cyclic adenosine monophosphate (cAMP) regulates cardiac excitation-contraction coupling (ECC) by signaling in discrete subcellular microdomains. Phosphodiesterase subfamilies 4B and 4D are critically involved in the regulation of cAMP signaling in mammalian cardiomyocytes. Alterations of PDE4 activity in human hearts [...] Read more.
The ubiquitous second messenger 3′,5′-cyclic adenosine monophosphate (cAMP) regulates cardiac excitation-contraction coupling (ECC) by signaling in discrete subcellular microdomains. Phosphodiesterase subfamilies 4B and 4D are critically involved in the regulation of cAMP signaling in mammalian cardiomyocytes. Alterations of PDE4 activity in human hearts has been shown to result in arrhythmias and heart failure. Here, we sought to systematically investigate specific roles of PDE4B and PDE4D in the regulation of cAMP dynamics in three distinct subcellular microdomains, one of them located at the caveolin-rich plasma membrane which harbors the L-type calcium channels (LTCCs), as well as at two sarco/endoplasmic reticulum (SR) microdomains centered around SR Ca2+-ATPase (SERCA2a) and cardiac ryanodine receptor type 2 (RyR2). Transgenic mice expressing Förster Resonance Energy Transfer (FRET)-based cAMP-specific biosensors targeted to caveolin-rich plasma membrane, SERCA2a and RyR2 microdomains were crossed to PDE4B-KO and PDE4D-KO mice. Direct analysis of the specific effects of both PDE4 subfamilies on local cAMP dynamics was performed using FRET imaging. Our data demonstrate that all three microdomains are differentially regulated by these PDE4 subfamilies. Whereas both are involved in cAMP regulation at the caveolin-rich plasma membrane, there are clearly two distinct cAMP microdomains at the SR formed around RyR2 and SERCA2a, which are preferentially controlled by PDE4B and PDE4D, respectively. This correlates with local cAMP-dependent protein kinase (PKA) substrate phosphorylation and arrhythmia susceptibility. Immunoprecipitation assays confirmed that PDE4B is associated with RyR2 along with PDE4D. Stimulated Emission Depletion (STED) microscopy of immunostained cardiomyocytes suggested possible co-localization of PDE4B with both sarcolemmal and RyR2 microdomains. In conclusion, our functional approach could show that both PDE4B and PDE4D can differentially regulate cardiac cAMP microdomains associated with calcium homeostasis. PDE4B controls cAMP dynamics in both caveolin-rich plasma membrane and RyR2 vicinity. Interestingly, PDE4B is the major regulator of the RyR2 microdomain, as opposed to SERCA2a vicinity, which is predominantly under PDE4D control, suggesting a more complex regulatory pattern than previously thought, with multiple PDEs acting at the same location. Full article
(This article belongs to the Collection Compartmentilisation of Cellular Signaling)
Show Figures

Figure 1

9 pages, 780 KiB  
Review
Understanding the Role of SERCA2a Microdomain Remodeling in Heart Failure Induced by Obesity and Type 2 Diabetes
by Ping Lai, Viacheslav O. Nikolaev and Kirstie A. De Jong
J. Cardiovasc. Dev. Dis. 2022, 9(5), 163; https://doi.org/10.3390/jcdd9050163 - 19 May 2022
Cited by 11 | Viewed by 3481
Abstract
Obesity and type 2 diabetes (T2D) are on trend to become a huge burden across all ages. They cause harm to almost every organ, especially the heart. For decades, the incidence of heart failure with impaired diastolic function (or called heart failure with [...] Read more.
Obesity and type 2 diabetes (T2D) are on trend to become a huge burden across all ages. They cause harm to almost every organ, especially the heart. For decades, the incidence of heart failure with impaired diastolic function (or called heart failure with preserved ejection fraction, HFpEF) has increased sharply. More and more studies have uncovered obesity and T2D to be closely associated with HFpEF. The sarcoplasmic/endoplasmic reticulum calcium ATPase2a (SERCA2a) microdomain is a key regulator of calcium reuptake into the sarcoplasmic reticulum (SR) during diastole. 3′,5′-cyclic adenosine monophosphate (cAMP) and its downstream effector cAMP dependent protein kinase (PKA) act locally within the SERCA2a microdomain to regulate the phosphorylation state of the small regulatory protein phospholamban (PLN), which forms a complex with SERCA2a. When phosphorylated, PLN promotes calcium reuptake into the SR and diastolic cardiac relaxation by disinhibiting SERCA2a pump function. In this review, we will discuss previous studies investigating the PLN/SERCA2a microdomain in obesity and T2D in order to gain a greater understanding of the underlying mechanisms behind obesity- and T2D-induced diastolic dysfunction, with the aim to identify the current state of knowledge and future work that is needed to guide further research in the field. Full article
Show Figures

Figure 1

Back to TopTop