Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = SCM bead

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 7743 KiB  
Article
Application of New Al-Si Welding Filler with High Concentration of Copper and Magnesium: High-Temperature Strength and Anti-Corrosion Mechanism
by Jun-Ren Zhao, Fei-Yi Hung and Chien-Yu Pan
Materials 2024, 17(1), 126; https://doi.org/10.3390/ma17010126 - 26 Dec 2023
Cited by 2 | Viewed by 1443
Abstract
Currently, the primary commercial aluminum alloy fillers used are 4043 and 5356. However, when welded with high-strength work pieces like 6061 and 7075 aluminum alloys, the strength of weld beads significantly lags behind that of the original welded material. Both 4043 and 5356 [...] Read more.
Currently, the primary commercial aluminum alloy fillers used are 4043 and 5356. However, when welded with high-strength work pieces like 6061 and 7075 aluminum alloys, the strength of weld beads significantly lags behind that of the original welded material. Both 4043 and 5356 aluminum alloys cannot be strengthened through heat treatment. The strength difference between the weld bead and base material doubles after heat treatment. In this study, an Al-Si-Cu-Mg alloy (SCM) filler modified using a heat-treatable A319 aluminum alloy was employed to investigate the post-welding microstructural and mechanical properties of specimens under room- and high-temperature conditions and after prolonged exposure in a saltwater environment (3.5 wt.% NaCl). The aim was to demonstrate that commercial aluminum alloy fillers could be substituted with a high-silicon aluminum alloy boasting excellent solidification and mechanical properties. The results revealed that, after heat treatment of the weld bead, dendrites were not eliminated, but the tensile strength increased to 310 MPa, closely matching that of commercial 6061 aluminum alloy. The strength of the weld bead remained higher than 250 MPa in high-temperature (240 °C) and saltwater environments. These findings underscore the potential application of this material. Full article
Show Figures

Figure 1

23 pages, 12883 KiB  
Review
Polymer Bead Foams: A Review on Foam Preparation, Molding, and Interbead Bonding Mechanism
by Junjie Jiang, Liang Wang, Fangwei Tian, Yaozong Li and Wentao Zhai
Macromol 2023, 3(4), 782-804; https://doi.org/10.3390/macromol3040045 - 1 Dec 2023
Cited by 8 | Viewed by 5518
Abstract
The diverse physical appearances and wide density range of polymer bead foams offer immense potential in various applications and future advancements. The multiscale and multilevel structural features of bead foams involve many fundamental scientific topics. This review presents a comprehensive overview of recent [...] Read more.
The diverse physical appearances and wide density range of polymer bead foams offer immense potential in various applications and future advancements. The multiscale and multilevel structural features of bead foams involve many fundamental scientific topics. This review presents a comprehensive overview of recent progress in the preparation and molding techniques of bead foams. Firstly, it gives a comparative analysis on the bead foam characteristics of distinct polymers. Then, a summary and comparison of molding techniques employed for fabricating bead foam parts are provided. Beyond traditional methods like steam-chest molding (SCM) and adhesive-assisted molding (AAM), emerging techniques like in-mold foaming and molding (IMFM) and microwave selective sintering (MSS) are highlighted. Lastly, the bonding mechanisms behind these diverse molding methods are discussed. Full article
Show Figures

Graphical abstract

16 pages, 3967 KiB  
Article
Conductive Ink-Coated Paper-Based Supersandwich DNA Biosensor for Ultrasensitive Detection of Neisseria gonorrhoeae
by Niharika Gupta, D. Kumar, Asmita Das, Seema Sood and Bansi D. Malhotra
Biosensors 2023, 13(4), 486; https://doi.org/10.3390/bios13040486 - 18 Apr 2023
Cited by 8 | Viewed by 2785
Abstract
Herein, we report results of the studies relating to the development of an impedimetric, magnetic bead-assisted supersandwich DNA hybridization assay for ultrasensitive detection of Neisseria gonorrhoeae, the causative agent of a sexually transmitted infection (STI), gonorrhea. First, a conductive ink was formulated [...] Read more.
Herein, we report results of the studies relating to the development of an impedimetric, magnetic bead-assisted supersandwich DNA hybridization assay for ultrasensitive detection of Neisseria gonorrhoeae, the causative agent of a sexually transmitted infection (STI), gonorrhea. First, a conductive ink was formulated by homogenously dispersing carboxylated multiwalled carbon nanotubes (cMWCNTs) in a stable emulsion of terpineol and an aqueous suspension of carboxymethyl cellulose (CMC). The ink, labeled C5, was coated onto paper substrates to fabricate C5@paper conductive electrodes. Thereafter, a magnetic bead (MB)-assisted supersandwich DNA hybridization assay was optimized against the porA pseudogene of N. gonorrhoeae. For this purpose, a pair of specific 5′ aminated capture probes (SCP) and supersandwich detector probes (SDP) was designed, which allowed the enrichment of target gonorrheal DNA sequence from a milieu of substances. The SD probe was designed such that instead of 1:1 binding, it allowed the binding of more than one T strand, leading to a ‘ladder-like’ DNA supersandwich structure. The MB-assisted supersandwich assay was integrated into the C5@paper electrodes for electrochemical analysis. The C5@paper electrodes were found to be highly conductive by a four-probe conductivity method (maximum conductivity of 10.1 S·cm−1). Further, the biosensing assay displayed a wide linear range of 100 aM-100 nM (109 orders of magnitude) with an excellent sensitivity of 22.6 kΩ·(log[concentration])−1. The clinical applicability of the biosensing assay was assessed by detecting genomic DNA extracted from N. gonorrhoeae in the presence of DNA from different non-gonorrheal bacterial species. In conclusion, this study demonstrates a highly sensitive, cost-effective, and label-free paper-based device for STI diagnostics. The ink formulation prepared for the study was found to be highly thixotropic, which indicates that the paper electrodes can be screen-printed in a reproducible and scalable manner. Full article
(This article belongs to the Special Issue DNA Based Biosensors)
Show Figures

Figure 1

18 pages, 3772 KiB  
Article
Adsorption of As and Pb by Stone Powder/Chitosan/Maghemite Composite Beads (SCM Beads): Kinetics and Column Study
by Gunho Song and Sanghwa Oh
Processes 2023, 11(2), 581; https://doi.org/10.3390/pr11020581 - 14 Feb 2023
Cited by 4 | Viewed by 1671
Abstract
Adsorption kinetics of As and Pb onto composite beads synthesized with stone powder, chitosan, and maghemite (SCM beads) with weight ratio of 1:1:0.5 were investigated in batch mode. Several kinetic models such as pseudo-first order kinetic model (PFOKM), pseudo-second order kinetic model (PSOKM), [...] Read more.
Adsorption kinetics of As and Pb onto composite beads synthesized with stone powder, chitosan, and maghemite (SCM beads) with weight ratio of 1:1:0.5 were investigated in batch mode. Several kinetic models such as pseudo-first order kinetic model (PFOKM), pseudo-second order kinetic model (PSOKM), two compartment first order kinetic model (TCFOKM), and modified two compartment first order kinetic model (MTCFOKM) were utilized to analyze the kinetics. Although the beads had low specific surface area and pore volume, MTCFOKM, one of two compartment models, could predict the most accurately because the As and Pb were adsorbed onto at least two kinds of adsorption sites such as functional groups in chitosan and Fe in maghemite. In MTCFOKM, both the fast adsorption fraction (f1’) and the fast adsorption constant (k1’) for Pb were higher than those for As. Therefore, the equilibrium time (teq) for Pb adsorption was shorter than that for As adsorption, indicating that Pb adsorption was more affinitive than As adsorption onto SCM beads (especially maghemite). Column study with a bed column reactor packed with the SCM beads was also conducted. For column study, the effect of flow rate and pore volume on removal efficiency of As and Pb was also investigated. Three models such as the Thomas, Adams-Bohart (A-B), and Yoon-Nelson (Y-N) models were used to fit the column experimental data to analyze the breakthrough curves and the saturation time. Both Thomas and Y-N models were most appropriate. Conclusively, the SCM beads are suitable for adsorption treatment of As and Pb from contaminated groundwater and are particularly effective in Pb removal. Full article
Show Figures

Figure 1

11 pages, 3774 KiB  
Article
Development of Electrically Conductive Thermosetting Resin Composites through Optimizing the Thermal Doping of Polyaniline and Radical Polymerization Temperature
by Kohei Takahashi, Kazuki Nagura, Masumi Takamura, Teruya Goto and Tatsuhiro Takahashi
Polymers 2022, 14(18), 3876; https://doi.org/10.3390/polym14183876 - 16 Sep 2022
Viewed by 1973
Abstract
This work developed an electrically conductive thermosetting resin composite that transitioned from a liquid to solid without using solvents in response to an increase in temperature. This material has applications as a matrix for carbon fiber reinforced plastics. The composite comprised polyaniline (PANI) [...] Read more.
This work developed an electrically conductive thermosetting resin composite that transitioned from a liquid to solid without using solvents in response to an increase in temperature. This material has applications as a matrix for carbon fiber reinforced plastics. The composite comprised polyaniline (PANI) together with dodecyl benzene sulfonic acid (DBSA) as a liquid dopant in addition to a radical polymerization system made of triethylene glycol dimethacrylate with a peroxide initiator. In this system, micron-sized non-conductive PANI particles combined with DBSA were dispersed in the form of conductive nano-sized particles or on the molecular level after doping induced by a temperature increase. The thermal doping temperature was successfully lowered by decreasing the PANI particle size via bead milling. Selection of an appropriate peroxide initiator also allowed the radical polymerization temperature to be adjusted such that doping occurred prior to solidification. Optimization of the thermal doping temperature and the increased radical polymerization temperature provided the material with a high electrical conductivity of 1.45 S/cm. Full article
Show Figures

Graphical abstract

14 pages, 2632 KiB  
Article
Adsorptive Removal of Arsenic and Lead by Stone Powder/Chitosan/Maghemite Composite Beads
by Hun Pak, Jesse Phiri, Junhyung We, Kyungho Jung and Sanghwa Oh
Int. J. Environ. Res. Public Health 2021, 18(16), 8808; https://doi.org/10.3390/ijerph18168808 - 20 Aug 2021
Cited by 11 | Viewed by 2548
Abstract
Arsenic (As) and lead (Pb) contamination in groundwater is a serious problem in countries that use groundwater as drinking water. In this study, composite beads, called SCM beads, synthesized using stone powder (SP), chitosan (Ch), and maghemite (Mag) with different weight ratios (1/1/0.1, [...] Read more.
Arsenic (As) and lead (Pb) contamination in groundwater is a serious problem in countries that use groundwater as drinking water. In this study, composite beads, called SCM beads, synthesized using stone powder (SP), chitosan (Ch), and maghemite (Mag) with different weight ratios (1/1/0.1, 1/1/0.3, and 1/1/0.5 for SP/Ch/Mag) were prepared, characterized and used as adsorbents for the removal of As and Pb from artificially contaminated water samples. Adsorption isotherm experiments of As and Pb onto the beads were conducted and single-solute adsorption isotherm models such as the Langmuir, Freundlich, Dubinin–Radushkevich (DR), and dual mode (DM) models were fitted to the experimental data to analyze the adsorption characteristics. The maximum adsorption capacities of the SCM beads were 75.7 and 232.8 mmol/kg for As and Pb, respectively, which were 40 and 5.6 times higher than that of SP according to the Langmuir model analyses. However, the DM model had the highest determinant coefficient (R2) values for both As and Pb adsorption, indicating that the beads had heterogenous adsorption sites with different adsorption affinities. These magnetic beads could be utilized to treat contaminated groundwater. Full article
(This article belongs to the Section Environmental Science and Engineering)
Show Figures

Figure 1

Back to TopTop