Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = Riegl VMX-2HA

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 22177 KiB  
Article
Optimizing Mobile Laser Scanning Accuracy for Urban Applications: A Comparison by Strategy of Different Measured Ground Points
by Lukáš Běloch and Karel Pavelka
Appl. Sci. 2024, 14(8), 3387; https://doi.org/10.3390/app14083387 - 17 Apr 2024
Cited by 4 | Viewed by 1369
Abstract
Mobile mapping systems are part of modern data collection in geodesy. It is one of many surveying methods where field collection is performed in a short time. Among their advantages are cost savings and better visualisation than classic surveying methods. This article is [...] Read more.
Mobile mapping systems are part of modern data collection in geodesy. It is one of many surveying methods where field collection is performed in a short time. Among their advantages are cost savings and better visualisation than classic surveying methods. This article is focused on accuracy determinations in urban built-up areas of mobile laser scanning using the Riegl VMX-2HA system. These areas, where there is a combination of dense housing and trees, are an integral part of cities. Their diversity and complexity make surveying by other surveying methods time-consuming and complicated. In particular, the GNSS RTK method encounters problematic locations where sky obscuration by surrounding elements reduces measurement accuracy. Data collection was performed on a test base in the city of Pilsen, Czech Republic. The base includes 27 control points and more than 100 checkpoints. Two sets of coordinates were created for the points; the first set is calculated using tied net adjustment and the second one is determined by RTK GNSS measurements. Point cloud calculations were processed in RiPROCESS software from Riegl, using different configurations and qualities of the control points. Each point cloud was analysed including the determination of point cloud deviations. This article is also dedicated to the identification of problematic spots, where measurement can be degraded. The results presented in this paper show the influence of the quality and different spacing of the control points on the point cloud, its accuracy compared to the precise points, and the global and local deformation of the point cloud. This work can be used as a basis for replacing classical surveying methods with a more efficient mobile laser scanning method. Full article
Show Figures

Figure 1

25 pages, 8852 KiB  
Article
Processing Chain for Estimation of Tree Diameter from GNSS-IMU-Based Mobile Laser Scanning Data
by Juraj Čerňava, Martin Mokroš, Ján Tuček, Michal Antal and Zuzana Slatkovská
Remote Sens. 2019, 11(6), 615; https://doi.org/10.3390/rs11060615 - 13 Mar 2019
Cited by 31 | Viewed by 5375
Abstract
Mobile laser scanning (MLS) is a progressive technology that has already demonstrated its ability to provide highly accurate measurements of road networks. Mobile innovation of the laser scanning has also found its use in forest mapping over the last decade. In most cases, [...] Read more.
Mobile laser scanning (MLS) is a progressive technology that has already demonstrated its ability to provide highly accurate measurements of road networks. Mobile innovation of the laser scanning has also found its use in forest mapping over the last decade. In most cases, existing methods for forest data acquisition using MLS result in misaligned scenes of the forest, scanned from different views appearing in one point cloud. These difficulties are caused mainly by forest canopy blocking the global navigation satellite system (GNSS) signal and limited access to the forest. In this study, we propose an approach to the processing of MLS data of forest scanned from different views with two mobile laser scanners under heavy canopy. Data from two scanners, as part of the mobile mapping system (MMS) Riegl VMX-250, were acquired by scanning from five parallel skid trails that are connected to the forest road. Misaligned scenes of the forest acquired from different views were successfully extracted from the raw MLS point cloud using GNSS time based clustering. At first, point clouds with correctly aligned sets of ground points were generated using this method. The loss of points after the clustering amounted to 33.48%. Extracted point clouds were then reduced to 1.15 m thick horizontal slices, and tree stems were detected. Point clusters from individual stems were grouped based on the diameter and mean GNSS time of the cluster acquisition. Horizontal overlap was calculated for the clusters from individual stems, and sufficiently overlapping clusters were aligned using the OPALS ICP module. An average misalignment of 7.2 mm was observed for the aligned point clusters. A 5-cm thick horizontal slice of the aligned point cloud was used for estimation of the stem diameter at breast height (DBH). DBH was estimated using a simple circle-fitting method with a root-mean-square error of 3.06 cm. The methods presented in this study have the potential to process MLS data acquired under heavy forest canopy with any commercial MMS. Full article
(This article belongs to the Special Issue 3D Point Clouds in Forests)
Show Figures

Graphical abstract

16 pages, 578 KiB  
Article
Performance Analysis of Mobile Laser Scanning Systems in Target Representation
by Yi Lin, Juha Hyyppä, Harri Kaartinen and Antero Kukko
Remote Sens. 2013, 5(7), 3140-3155; https://doi.org/10.3390/rs5073140 - 24 Jun 2013
Cited by 14 | Viewed by 8314
Abstract
The technology of mobile laser scanning (MLS) has developed rapidly in recent years. This speedy development is evidenced by the emergence of a variety of MLS systems in commercial market and academic institutions. However, the producers tend to supply the specifications of the [...] Read more.
The technology of mobile laser scanning (MLS) has developed rapidly in recent years. This speedy development is evidenced by the emergence of a variety of MLS systems in commercial market and academic institutions. However, the producers tend to supply the specifications of the individual sensors in a generic sense, and this is not enough for guiding the choice of a MLS system for a specific application case. So far, the research efforts comparing the efficacy ranges of the existing MLS systems have been little reported. To fill this gap, this study examined the performance of three typical MLS systems (Riegl VMX-250, Roamer and Sensei) in terms of target representation. Retrievals of window areas and lighting pole radiuses served as representative cases, as these parameters correspond to the spatial scales from meter to centimeter. The evaluations showed that the VMX-250 with highest sampling density did best, and thus, it was preferred in the scenario of this study. If both the cost and efficacy were regarded, Roamer was a choice of compromise. Therefore, an application-oriented scheme was suggested for selecting MLS systems to acquire the desired performance. Full article
(This article belongs to the Special Issue Advances in Mobile Laser Scanning and Mobile Mapping)
Show Figures

Back to TopTop