Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Quercus myrsinifolia Blume

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3797 KiB  
Article
Distribution of Plant Hormones and Their Precursors in Cambial Region Tissues of Quercus myrsinifolia and Castanopsis cuspidata var.sieboldii after Bending Stems or Applying Ethylene precursor
by Yoshio Kijidani, Taku Tsuyama and Yuji Tokumoto
Forests 2023, 14(4), 813; https://doi.org/10.3390/f14040813 - 15 Apr 2023
Cited by 3 | Viewed by 2116
Abstract
The role of plant hormones in tension wood (TW) formation has been studied but is still unclear. IAA, ABA, ACC, tZ, tZR, iP, and iPR in cambial region tissues were identified and quantified by liquid chromatography/mass spectrometry (LC/MS). We examined the distribution of [...] Read more.
The role of plant hormones in tension wood (TW) formation has been studied but is still unclear. IAA, ABA, ACC, tZ, tZR, iP, and iPR in cambial region tissues were identified and quantified by liquid chromatography/mass spectrometry (LC/MS). We examined the distribution of plant hormones and their precursors in the stems of Quercus myrsinifolia Blume and Castanopsis cuspidata var.sieboldii Nakai after bending the stems or applying an ethylene precursor (ACC). After 3 weeks of bending, though not after 1 week of bending, the auxin (IAA) and abscisic acid (ABA) amounts were larger on the TW side than on the opposite wood (OW) side and in upright trees. After 2 weeks of bending, the peak concentrations of IAA in cambium on the TW side were obviously higher than those on the OW side. After 1 week of bending, the ACC amounts on both sides were larger than in upright trees, but after 3 weeks of bending, they were smaller than in upright trees. Applied ACC did not enhance TW formation but induced axical parenchyma and phloem formation in C. cuspidata var.sieboldii. These results indicated that the distribution patterns of IAA and ABA might have important roles in TW formation in these two species. The role of ACC might be limited in the early stages of TW formation. Full article
(This article belongs to the Special Issue Intrinsic Regulation of Diameter Growth in Woody Plants)
Show Figures

Figure 1

17 pages, 2645 KiB  
Article
Germination and Growth Characteristics of Quercus myrsinifolia Blume Seedlings According to Seed Coat Removal, Type of Potting Soil and Irrigation Cycle
by Eun-Ji Choi, Seong-Hyeon Yong, Dong-Jin Park, Kwan-Been Park, Do-Hyun Kim, Eon-Ju Jin and Myung-Suk Choi
Forests 2022, 13(6), 938; https://doi.org/10.3390/f13060938 - 15 Jun 2022
Cited by 4 | Viewed by 2738
Abstract
The importance of evergreen oak species is increasing due to changes in the ecosystem caused by climate change and environmental changes such as fine dust and carbon dioxide. The Quercus myrsinifolia Blume seeds showed a recalcitrant seed property, where the germination rate decreased [...] Read more.
The importance of evergreen oak species is increasing due to changes in the ecosystem caused by climate change and environmental changes such as fine dust and carbon dioxide. The Quercus myrsinifolia Blume seeds showed a recalcitrant seed property, where the germination rate decreased when the moisture content was decreased. For seedling propagation of evergreen oak, the effect of oak seed coat (pericarp and testa) removal on germination and seedling growth as well as the effect of potting soil and irrigation cycle on seedling quality were investigated. The germination rate and germination characteristics of Q. myrsinifolia evergreen oak seeds showed significant differences depending on the storage period and the presence or absence of seed coat. Seed coat removal significantly increased germination rate compared to intact seeds, accelerated mean germination time, and increased germination rate and germination value. There was no significant difference in germination rate according to the storage period. The growth of Q. myrsinifolia seedlings was much better in the seeds with the seed coat removed than the intact seeds. The root collar diameter of seedlings germinated from intact seeds was 2.44 mm, and the root collar diameter of seedlings from which the seed coat was removed was 3.38 mm. As a result of the growth characteristics according to the potting soil, 1- and 3-year-old Q. myrsinifolia seedlings showed excellent root growth in commercial potting soil and sand mixed potting soil. Consequently, seedling quality index was 0.124–0.257 according to irrigation and 0.149–0.262 according to potting soil. From observing the root growth of the seedlings according to the irrigation treatment, in the case of 3-year-old seedlings, the total root length was 432 cm when irrigated every 3 days, and the growth was the best. The above results are expected to contribute significantly to the mass propagation of Q. myrsinifolia, which is important for warming and urban greening. Full article
(This article belongs to the Section Forest Ecophysiology and Biology)
Show Figures

Figure 1

Back to TopTop