Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = Pure kinetic Alfvén waves (KAWs)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 4526 KB  
Article
The Tantawy Technique for Modeling Fractional Kinetic Alfvén Solitary Waves in an Oxygen–Hydrogen Plasma in Earth’s Upper Ionosphere
by Shaukat Ali Shan, Wedad Albalawi, Rania A. Alharbey and Samir A. El-Tantawy
Fractal Fract. 2025, 9(11), 705; https://doi.org/10.3390/fractalfract9110705 - 31 Oct 2025
Viewed by 510
Abstract
Kinetic Alfvén waves (KAWs) are investigated in an Oxygen–Hydrogen plasma with electrons following the behavior of rq-distribution in an upper ionosphere. We aim to study low-frequency and long wavelengths at 1700 kms in the upper ionosphere of Earth as detected by [...] Read more.
Kinetic Alfvén waves (KAWs) are investigated in an Oxygen–Hydrogen plasma with electrons following the behavior of rq-distribution in an upper ionosphere. We aim to study low-frequency and long wavelengths at 1700 kms in the upper ionosphere of Earth as detected by Freja satellite. The fluid model and reductive perturbation method are combined to obtain the evolutionary wave equations that can be used to describe both fractional and non-fractional KAWs in an Oxygen–Hydrogen ion plasma. This procedure is used to obtain the integer-order Korteweg–de Vries (KdV) equation and then analyze its solitary wave solution. In addition, this study is carried out to evaluate the fractional KdV (FKdV) equation using a new approach called the “Tantawy technique” in order to generate more stable and highly accurate approximations that will be utilized to accurately depict physical events. This investigation also helps locate the existence regions of the solitary waves (SWs), and in turn displays that the characteristics of KAWs are affected by a number of physical factors, such as the nonthermal parameters/spectral indices “r”, “q”, and obliqueness (characterized by lz). Depending on the parameter governing the distribution, especially the nonthermality of inertialess electrons, the rq-distribution of electrons has a major impact on the properties of KAWs. Full article
(This article belongs to the Special Issue Time-Fractal and Fractional Models in Physics and Engineering)
Show Figures

Figure 1

Back to TopTop