Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Prunus mira Koehne

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 11180 KiB  
Article
Global Warming Will Drive Spatial Expansion of Prunus mira Koehne in Alpine Areas, Southeast Qinghai–Tibet Plateau
by Jinkai Gu, Qiang He, Qingwan Li, Qinglin Li, Shengjian Xiang, Wanchi Li, Aohang Jin, Shunbin Wang, Feipeng Liu and Guoyong Tang
Forests 2024, 15(11), 2022; https://doi.org/10.3390/f15112022 - 16 Nov 2024
Viewed by 1168
Abstract
Global climate change exerts great effects on plant distributions. However, the response of Prunus mira Koehne, one of the most important species for ecological protection in the southeast of the Qinghai–Tibet Plateau, to climate change remains unclear. To explore the ecological factors affecting [...] Read more.
Global climate change exerts great effects on plant distributions. However, the response of Prunus mira Koehne, one of the most important species for ecological protection in the southeast of the Qinghai–Tibet Plateau, to climate change remains unclear. To explore the ecological factors affecting the distribution of P. mira in the context of global climate change, the MaxENT model is used to predict suitable habitats for P. mira. Our study indicated that the distribution of Prunus mira Koehn is primarily influenced by temperature rather than precipitation, and warming can facilitate the growth of P. mira. When the temperature seasonality (bio4) ranges from 134 to 576 and the mean temperature of the coldest quarter (bio11) ranges from −2.6 °C to 2.7 °C, it is most conducive to the growth of P. mira. Among the four climate scenarios, the optimal habitat for P. mira is predominantly concentrated in river valley areas and is expected to expand into higher altitude regions, particularly in the north and southeast. SSP245 and SSP370 climate pathways are conducive to the growth and spatial expansion of P. mira. Our findings highlight the significant impact of temperature not precipitation on the distribution of P. mira, and this insight is crucial for the stability and conservation of this ecologically significant plant species. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

34 pages, 9136 KiB  
Article
Identification of Hair Growth Promoting Components in the Kernels of Prunus mira Koehne and Their Mechanism of Action
by You Zhou, Jingwen Zhang, Wanyue Chen, Xiaoli Li, Ke Fu, Weijun Sun, Yuan Liang, Min Xu, Jing Zhang, Gang Fan, Hongxiang Yin and Zhang Wang
Molecules 2022, 27(16), 5242; https://doi.org/10.3390/molecules27165242 - 17 Aug 2022
Cited by 9 | Viewed by 3505
Abstract
The application of the seed oil of Prunus mira Koehne (Tibetan name ཁམབུ།), a plant belonging to the Rosaceae family, for the treatment of alopecia has been recorded in Jingzhu Materia Medica (ཤེལ་གོང་ཤེལ་ཕྲེང་།) (the classic of Tibetan medicine) and Dictionary of Chinese Ethnic [...] Read more.
The application of the seed oil of Prunus mira Koehne (Tibetan name ཁམབུ།), a plant belonging to the Rosaceae family, for the treatment of alopecia has been recorded in Jingzhu Materia Medica (ཤེལ་གོང་ཤེལ་ཕྲེང་།) (the classic of Tibetan medicine) and Dictionary of Chinese Ethnic Medicine. This study aims to reveal the effective components and mechanism of hair growth promotion in the kernel of Prunus mira Koehne. Network pharmacology was used to predict the mechanism of action and effective components in the treatment of the kernel of Prunus mira Koehne. The contents of amygdalin in 12 batches of the kernel of Prunus mira Koehne were determined by HPLC. An animal model of the depilation of KM mice induced by sodium sulfide was created, and five effective components that promoted hair growth were initially screened. In the study of the effectiveness and mechanism of action, KM and C57BL/6 mice are selected as experimental objects, three screening tests for active components of the kernel of P. mira are performed, and three effective components are screened out from the eight components. HE staining was used to detect the number of hair follicles and the thickness of the dermis. RT-PCR and immunohistochemistry were used to evaluate the influence of the expression of indicators in the Wnt/β-catenin signaling pathway in skin, including β-catenin, GSK-3β, and mRNA and protein expression levels of Cyclin D 1 and LEF 1. The network pharmacology study showed 12 signaling pathways involving 25 targets in the treatment of alopecia by the kernel of Prunus mira Koehne. vitamin E (3.125 mg/cm2/d), β-sitosterol (0.061 mg/cm2/d), and linoleic acid (0.156 mg/cm2/d) in the kernel of Prunus mira Koehne can promote hair growth in mice, and the mechanism of action may be related to the Wnt/β-catenin pathway. Full article
Show Figures

Graphical abstract

Back to TopTop