Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Priestia koreensis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4318 KiB  
Article
Novel Cold-Active Levansucrase (SacBPk) from Priestia koreensis HL12 for Short-Chain Fructooligosaccharides and Levan Synthesis
by Hataikarn Lekakarn, Natthamon Phusiri, Teeranart Komonmusik, Phuphiphat Jaikaew, Srisakul Trakarnpaiboon and Benjarat Bunterngsook
Catalysts 2025, 15(3), 216; https://doi.org/10.3390/catal15030216 - 25 Feb 2025
Cited by 1 | Viewed by 912
Abstract
Levansucrases are key enzymes responsible for the synthesis of β-2,6-linked fructans, found in plants and microbes, especially in bacteria. Levansucrases have been applied in the production of levan biopolymer and fructooligosaccharides (FOSs) using sucrose as a substrate as well as in reducing sugar [...] Read more.
Levansucrases are key enzymes responsible for the synthesis of β-2,6-linked fructans, found in plants and microbes, especially in bacteria. Levansucrases have been applied in the production of levan biopolymer and fructooligosaccharides (FOSs) using sucrose as a substrate as well as in reducing sugar levels in fruit juice. As a result, levansucrases that are active at low temperatures are required for industrial applications to maintain product stability. Therefore, this work firstly reports the novel cold-active levansucrase (SacBPk) isolated from a sucrolytic bacterial strain, P. koreensis HL12. The SacBPk was classified into glycoside hydrolase family 68 subfamily 1 (GH68_1) and comprised a single catalytic domain with the Asp104/Asp267/Glu362 catalytic triad. Interestingly, the recombinant SacBPk demonstrated cold-active levansucrase activity at low temperatures (on ice and 4–40 °C) with the highest specific activity (167.46 U/mg protein) observed at 35 and 40 °C in 50 mM sodium phosphate buffer pH 6.0. SacBPk mainly synthesized levan polymer as the major product (129 g/L, corresponding to 25.8% of total sugar) with a low number of short-chain FOSs (GF2–4) (12.8 g/L, equivalent to 2.5% of total sugar) from 500 g/L sucrose after incubating at 35 °C for 48 h. These results demonstrate the industrial application potential of SacBPk levansucrase for levan and FOSs production. Full article
Show Figures

Graphical abstract

19 pages, 7019 KiB  
Article
In-Depth Characterization of Debranching Type I Pullulanase from Priestia koreensis HL12 as Potential Biocatalyst for Starch Saccharification and Modification
by Daran Prongjit, Hataikarn Lekakarn, Benjarat Bunterngsook, Katesuda Aiewviriyasakul, Wipawee Sritusnee, Nattapol Arunrattanamook and Verawat Champreda
Catalysts 2022, 12(9), 1014; https://doi.org/10.3390/catal12091014 - 7 Sep 2022
Cited by 10 | Viewed by 3603
Abstract
Pullulanase is an effective starch debranching enzyme widely used in starch saccharification and modification. In this work, the biochemical characteristics and potential application of a new type I pullulanase from Priestia koreensis HL12 (HL12Pul) were evaluated and reported for the first time. Through [...] Read more.
Pullulanase is an effective starch debranching enzyme widely used in starch saccharification and modification. In this work, the biochemical characteristics and potential application of a new type I pullulanase from Priestia koreensis HL12 (HL12Pul) were evaluated and reported for the first time. Through in-depth evolutionary analysis, HL12Pul was classified as type I pullulanase belonging to glycoside hydrolase family 13, subfamily 14 (GH13_14). HL12Pul comprises multi-domains architecture, including two carbohydrate-binding domains, CBM68 and CBM48, at the N-terminus, the TIM barrel structure of glycoside hydrolase family 13 (GH13) and C-domain. Based on sequence analysis and experimental cleavage profile, HL12Pul specifically hydrolyzes only α-1,6 glycosidic linkage-rich substrates. The enzyme optimally works at 40 °C, pH 6.0, with the maximum specific activity of 181.14 ± 3.55 U/mg protein and catalytic efficiency (kcat/Km) of 49.39 mL/mg·s toward pullulan. In addition, HL12Pul worked in synergy with raw starch-degrading α-amylase, promoting raw cassava starch hydrolysis and increasing the sugar yield by 2.9-fold in comparison to the α-amylase alone in a short reaction time. Furthermore, HL12Pul effectively produces type III-resistant starch (RSIII) from cassava starch with a production yield of 70%. These indicate that HL12Pul has the potential as a biocatalyst for starch saccharification and modification. Full article
Show Figures

Graphical abstract

Back to TopTop