Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = Poecillastra compressa

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 756 KiB  
Article
Poecillastrosides, Steroidal Saponins from the Mediterranean Deep-Sea Sponge Poecillastra compressa (Bowerbank, 1866)
by Kevin Calabro, Elaheh Lotfi Kalahroodi, Daniel Rodrigues, Caridad Díaz, Mercedes de la Cruz, Bastien Cautain, Rémi Laville, Fernando Reyes, Thierry Pérez, Bassam Soussi and Olivier P. Thomas
Mar. Drugs 2017, 15(7), 199; https://doi.org/10.3390/md15070199 - 26 Jun 2017
Cited by 17 | Viewed by 5473
Abstract
The first chemical investigation of the Mediterranean deep-sea sponge Poecillastra compressa (Bowerbank, 1866) led to the identification of seven new steroidal saponins named poecillastrosides A–G (17). All saponins feature an oxidized methyl at C-18 into a primary alcohol or [...] Read more.
The first chemical investigation of the Mediterranean deep-sea sponge Poecillastra compressa (Bowerbank, 1866) led to the identification of seven new steroidal saponins named poecillastrosides A–G (17). All saponins feature an oxidized methyl at C-18 into a primary alcohol or a carboxylic acid. While poecillastrosides A–D (14) all contain an exo double bond at C-24 of the side-chain and two osidic residues connected at O-2′, poecillastrosides E–G (57) are characterized by a cyclopropane on the side-chain and a connection at O-3′ between both sugar units. The chemical structures were elucidated through extensive spectroscopic analysis (High-Resolution Mass Spectrometry (HRESIMS), 1D and 2D NMR) and the absolute configurations of the sugar residues were assigned after acidic hydrolysis and cysteine derivatization followed by LC-HRMS analyses. Poecillastrosides D and E, bearing a carboxylic acid at C-18, were shown to exhibit antifungal activity against Aspergillus fumigatus. Full article
(This article belongs to the Special Issue Marine Glycosides)
Show Figures

Graphical abstract

Back to TopTop