Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = Pinus ponderosa var. brachyptera (Engelm.)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2175 KiB  
Article
Shifts in Climate–Growth Relationships of Sky Island Pines
by Paula E. Marquardt, Brian R. Miranda and Frank W. Telewski
Forests 2019, 10(11), 1011; https://doi.org/10.3390/f10111011 - 12 Nov 2019
Cited by 6 | Viewed by 2717
Abstract
Rising temperatures and changes in precipitation may affect plant responses, and mountainous regions in particular are sensitive to the impacts of climate change. The Santa Catalina Mountains, near Tucson, Arizona, USA, are among the best known Madrean Sky Islands, which are defined by [...] Read more.
Rising temperatures and changes in precipitation may affect plant responses, and mountainous regions in particular are sensitive to the impacts of climate change. The Santa Catalina Mountains, near Tucson, Arizona, USA, are among the best known Madrean Sky Islands, which are defined by pine-oak forests. We compared the sensitivity and temporal stability of climate–growth relationships to quantify the growth responses of sympatric taxa of ponderosa pine to changing climate. Three taxa (three-needle, mixed-needle, and five-needle types) collected from southern slopes of two contact zones (Mt. Lemmon, Mt. Bigelow) were evaluated. Positive climate–growth correlations in these semiarid high-elevation pine forests indicated a seasonal shift from summer- to spring-dominant precipitation since 1950, which is a critical time for reproduction. Mixed- and five-needle types responded to winter precipitation, and growth was reduced for the five-needle type when spring conditions were dry. Growth trends in response to temperature and specific to site were observed, which indicated the climate signal can be weakened when data are combined into a single chronology. Significant fluctuations in temperature–growth correlations since 1950 occurred for all needle types. These results demonstrated a dramatic shift in sensitivity of annual tree growth to the seasonality of the limiting factor, and a climatic trend that increases local moisture stress may impact the stability of climate–growth relationships. Moreover, output from temperature–growth analyses based on ring-width data (for example from semiarid sites) that does not account for positive and negative growth trends may be adversely affected, potentially impacting climate reconstructions. Full article
Show Figures

Figure 1

Back to TopTop