error_outline You can access the new MDPI.com website here. Explore and share your feedback with us.
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = Pichincha volcano

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 22851 KB  
Article
Analysis of the Impact Area of the 2022 El Tejado Ravine Mudflow (Quito, Ecuador) from the Sedimentological and the Published Multimedia Documents Approach
by Liliana Troncoso, Francisco Javier Torrijo, Elias Ibadango, Luis Pilatasig, Olegario Alonso-Pandavenes, Alex Mateus, Stalin Solano, Ruber Cañar, Nicolás Rondal and Francisco Viteri
GeoHazards 2024, 5(3), 596-620; https://doi.org/10.3390/geohazards5030031 - 30 Jun 2024
Cited by 3 | Viewed by 3370
Abstract
Quito (Ecuador) has a history of mudflow events from ravines that pose significant risks to its urban areas. Located close to the Pichincha Volcanic Complex, on 31 January 2022, the northwest and central parts of the city were hit by a mudflow triggered [...] Read more.
Quito (Ecuador) has a history of mudflow events from ravines that pose significant risks to its urban areas. Located close to the Pichincha Volcanic Complex, on 31 January 2022, the northwest and central parts of the city were hit by a mudflow triggered by unusual rainfall in the upper part of the drainage, with 28 fatalities and several properties affected. This research focuses on the affected area from collector overflow to the end, considering sedimentological characteristics and behavior through various urban elements. This study integrates the analysis of videos, images, and sediment deposits to understand the dynamics and impacts of the mudflow using a multidisciplinary approach. The methodology includes verifying multimedia materials using free software alongside the Large-Scale Particle Image Velocimetry (LSPIV) to estimate the kinematic parameters of the mudflow. The affected area, reaching a maximum distance of 3.2 km from the overflow point, was divided into four zones for a detailed analysis, each characterized by its impact level and sediment distribution. Results indicate significant variations in mudflow behavior across different urban areas, influenced by topographical and anthropogenic factors. Multimedia analysis provided insights into the mudflow’s velocity and evolution as it entered urban areas. The study also highlights the role of urban planning and infrastructure in modifying the mudflow’s distribution, particularly in the Northern and Southern Axes of its path, compared with a similar 1975 event, seven times larger than this. It also contributes to understanding urban mudflow events in Quito, offering valuable insights for disaster risk management in similar contexts. Full article
Show Figures

Figure 1

Back to TopTop