Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Pashto handwritten character recognition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3780 KiB  
Article
Recognition of Cursive Pashto Optical Digits and Characters with Trio Deep Learning Neural Network Models
by Muhammad Zubair Rehman, Nazri Mohd. Nawi, Mohammad Arshad and Abdullah Khan
Electronics 2021, 10(20), 2508; https://doi.org/10.3390/electronics10202508 - 15 Oct 2021
Cited by 6 | Viewed by 3739
Abstract
Pashto is one of the most ancient and historical languages in the world and is spoken in Pakistan and Afghanistan. Various languages like Urdu, English, Chinese, and Japanese have OCR applications, but very little work has been conducted on the Pashto language in [...] Read more.
Pashto is one of the most ancient and historical languages in the world and is spoken in Pakistan and Afghanistan. Various languages like Urdu, English, Chinese, and Japanese have OCR applications, but very little work has been conducted on the Pashto language in this perspective. It becomes more difficult for OCR applications to recognize handwritten characters and digits, because handwriting is influenced by the writer’s hand dynamics. Moreover, there was no publicly available dataset for handwritten Pashto digits before this study. Due to this, there was no work performed on the recognition of Pashto handwritten digits and characters combined. To achieve this objective, a dataset of Pashto handwritten digits consisting of 60,000 images was created. The trio deep learning Convolutional Neural Network, i.e., CNN, LeNet, and Deep CNN were trained and tested with both Pashto handwritten characters and digits datasets. From the simulations, the Deep CNN achieved 99.42 percent accuracy for Pashto handwritten digits, 99.17 percent accuracy for handwritten characters, and 70.65 percent accuracy for combined digits and characters. Similarly, LeNet and CNN models achieved slightly less accuracies (LeNet; 98.82, 99.15, and 69.82 percent and CNN; 98.30, 98.74, and 66.53 percent) for Pashto handwritten digits, Pashto characters, and the combined Pashto digits and characters recognition datasets, respectively. Based on these results, the Deep CNN model is the best model in terms of accuracy and loss as compared to the other two models. Full article
(This article belongs to the Special Issue Machine Learning Technologies for Big Data Analytics)
Show Figures

Figure 1

23 pages, 5537 KiB  
Article
Recognition of Pashto Handwritten Characters Based on Deep Learning
by Muhammad Sadiq Amin, Siddiqui Muhammad Yasir and Hyunsik Ahn
Sensors 2020, 20(20), 5884; https://doi.org/10.3390/s20205884 - 17 Oct 2020
Cited by 18 | Viewed by 5188
Abstract
Handwritten character recognition is increasingly important in a variety of automation fields, for example, authentication of bank signatures, identification of ZIP codes on letter addresses, and forensic evidence. Despite improved object recognition technologies, Pashto’s hand-written character recognition (PHCR) remains largely unsolved due to [...] Read more.
Handwritten character recognition is increasingly important in a variety of automation fields, for example, authentication of bank signatures, identification of ZIP codes on letter addresses, and forensic evidence. Despite improved object recognition technologies, Pashto’s hand-written character recognition (PHCR) remains largely unsolved due to the presence of many enigmatic hand-written characters, enormously cursive Pashto characters, and lack of research attention. We propose a convolutional neural network (CNN) model for recognition of Pashto hand-written characters for the first time in an unrestricted environment. Firstly, a novel Pashto handwritten character data set, “Poha”, for 44 characters is constructed. For preprocessing, deep fusion image processing techniques and noise reduction for text optimization are applied. A CNN model optimized in the number of convolutional layers and their parameters outperformed common deep models in terms of accuracy. Moreover, a set of benchmark popular CNN models applied to Poha is evaluated and compared with the proposed model. The obtained experimental results show that the proposed model is superior to other models with test accuracy of 99.64 percent for PHCR. The results indicate that our model may be a strong candidate for handwritten character recognition and automated PHCR applications. Full article
Show Figures

Figure 1

Back to TopTop