Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Parasaissetia nigra Nietner

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 279 KiB  
Article
Effects of High-Temperature Stress on Biological Characteristics of Coccophagus japonicus Compere
by Ying Sun, Meijuan Yang, Zhengpei Ye, Junhong Zhu, Yueguan Fu, Junyu Chen and Fangping Zhang
Insects 2024, 15(10), 801; https://doi.org/10.3390/insects15100801 - 14 Oct 2024
Cited by 3 | Viewed by 1234
Abstract
The parasitoid, Coccophagus japonicus Compere (Hymenoptera: Aphelinidae) is a dominant natural enemy of Parasaissetia nigra Nietner (Hemiptera: Coccidae), an important pest of rubber trees. Much of Chinese rubber is cultivated in hotter regions such as Yunnan and Hainan, exposing applied parasitoids to non-optimal [...] Read more.
The parasitoid, Coccophagus japonicus Compere (Hymenoptera: Aphelinidae) is a dominant natural enemy of Parasaissetia nigra Nietner (Hemiptera: Coccidae), an important pest of rubber trees. Much of Chinese rubber is cultivated in hotter regions such as Yunnan and Hainan, exposing applied parasitoids to non-optimal temperatures. Therefore, C. japonicus must adapt to avoid temperature-related impacts on survival and population expansion. In this study, we monitored the survival rate, developmental duration, parasitism rate, and fecundity of C. japonicus during short-term exposures to 36 °C, 38 °C, and 40 °C for 2, 4, and 6 h, as well as continuous exposures to 32 °C and 34 °C for 3 days. The results show that short-term exposure to high-temperature stress leads to decreased survival rate of C. japonicus larvae and pupae, with survival rates declining as temperature and duration increase. High-temperature stress also delayed insect development, reduced mature egg production, shortened the body length of newly emerged females, and decreased female lifespans. Moreover, continuous high-temperature stress was found to significantly impact the development and reproduction of C. japonicus. Compared with the CK (27 °C), 3 d of continuous exposure to 34 °C prolonged developmental duration, shortened the body length and lifespan of newly emerged females, reduced survival rate and single female fecundity, and significantly decreased offspring numbers and parasitism rates. Temperatures of 36 °C, 38 °C, and 40 °C decreased the mortality time of adult females to 28.78, 16.04, and 7.91 h, respectively. Adverse temperatures also affected the insects’ functional response, with 8 h of stress at 36 °C, 38 °C, and 40 °C causing the control efficiency of C. japonicus on P. nigra. This level of stress in the parasitoids was found to reduce the immediate attack rate and search effect, prolong processing time, and attenuate interference between small prey. Parasitoid efficiency was lowest following exposure to 40 °C. In this study, we determined the range of high temperatures that C. japonicus populations can tolerate under short- or long-term stress, providing guidance for future field applications. Full article
(This article belongs to the Section Insect Physiology, Reproduction and Development)
14 pages, 1240 KiB  
Article
Influence of Temperature, Photoperiod, and Supplementary Nutrition on the Development and Reproduction of Scutellista caerulea Fonscolombe (Hymenoptera: Pteromalidae)
by Xian Li, Zhengpei Ye, Junyu Chen, Junhong Zhu, Dongyin Han, Jianyun Wang, Lei Li, Yueguan Fu and Fangping Zhang
Insects 2023, 14(1), 82; https://doi.org/10.3390/insects14010082 - 13 Jan 2023
Cited by 2 | Viewed by 2285
Abstract
Scutellista ciruela Fonscolombe has a significant controlling effect on the rubber tree pest, Parasaissetia nigra Nietner. To identify the optimal conditions for the population growth of S. caerulea, we assessed how temperature, photoperiod, and supplementary nutrition affected its development and reproduction. The [...] Read more.
Scutellista ciruela Fonscolombe has a significant controlling effect on the rubber tree pest, Parasaissetia nigra Nietner. To identify the optimal conditions for the population growth of S. caerulea, we assessed how temperature, photoperiod, and supplementary nutrition affected its development and reproduction. The results demonstrated that the number of eggs laid and parasitism rates of S. caerulea were the highest at 33 °C. The developmental rate of S. caerulea was the fastest and the number of emerged adults the highest. The number of eggs laid and the parasitism rates increased when the light duration increased within a day. Females did not lay any eggs when the whole day was dark. At a photoperiod of 14:10 (L:D), the developmental duration was the shortest and the number of emerged adults was the highest. Adult life span was the longest under a 12:12 (L:D) photoperiod. During the adult stage, supplementary nutrition, such as sucrose, fructose, honey, and glucose, increased the life span of S. caerulea. The life span of S. caerulea was longer when provided with a supplementary diet of sucrose or honey, compared to other tested diets. The results suggested that the most suitable conditions for S. caerulea’s population growth were the following: 30 to 33 °C, with 12 to 14 h of daylight, and the provision of sucrose or honey as supplemental diet for the adults. Full article
(This article belongs to the Section Insect Physiology, Reproduction and Development)
Show Figures

Figure 1

Back to TopTop