Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = PRKO

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1810 KiB  
Article
Progesterone Promotes Anti-Anxiety/Depressant-like Behavior and Trophic Actions of BDNF in the Hippocampus of Female Nuclear Progesterone Receptor, but Not 5α-Reductase, Knockout Mice
by Cheryl A. Frye, Daina M. Cleveland, Anjali Sadarangani and Jennifer K. Torgersen
Int. J. Mol. Sci. 2025, 26(3), 1173; https://doi.org/10.3390/ijms26031173 - 29 Jan 2025
Cited by 1 | Viewed by 1334
Abstract
Progestogens’ anti-anxiety and anti-depressive effects and mechanisms are not well-understood. Progestogens are hypothesized to have anti-anxiety and anti-depressive effects on behavior, independent of actions at nuclear progestin receptors (NPRs) and dependent on allopregnanolone (5α-pregnan-3α-ol-20-one; 3α,5α-THP), a 5α-reduced, neuroactive metabolite of progesterone (P4 [...] Read more.
Progestogens’ anti-anxiety and anti-depressive effects and mechanisms are not well-understood. Progestogens are hypothesized to have anti-anxiety and anti-depressive effects on behavior, independent of actions at nuclear progestin receptors (NPRs) and dependent on allopregnanolone (5α-pregnan-3α-ol-20-one; 3α,5α-THP), a 5α-reduced, neuroactive metabolite of progesterone (P4). Adult c57 mice in behavioral estrus (proestrus; pro) showed more anti-anxiety-like and anti-depressant-like behavior and higher levels of estradiol (E2), P4, and allopregnanolone in the hippocampus/amygdala complex. Proestrus c57 > 5α-reductase knockout (5αRKO) mice made more central entries in an open field than diestrus c57 and 5αRKO mice that were not different. Ovariectomized (OVX) c57 mice administered 1, 2, or 4 mg/kg P4 SC showed dosage-dependent increases in central entries in an open field (more anti-anxiety-like behavior); 5αRKO mice had maximal increases at 1–2 mg/kg P4. OVX c57 and 5αRKO mice showed maximum increases in central entries with SC 3α,5α-THP (4 mg/kg), and c57s showed a similar maximal response to P4 (4 mg/kg), but 5αRKOs response was half at that dosage. P4 (4 mg/kg SC to OVX c57 or progestin receptor knockout (PRKO) mice decreased immobility (depression-like behavior) in the forced swim task. Effects of E2 and veh were similar in both groups. Levels of 3α,5α-THP in the hippocampus/amygdala were consistent with effects on central entries in the open field. Levels of brain-derived neurotrophic factor (BDNF) in the hippocampus/amygdala were greater among E2-primed (0.09 mg/kg, SC) vs vehicle-administered mice. In sum, adult female mice can be responsive to P4 for anti-anxiety/anti-depressant-like behavior; such effects may be independent of NPRs but require 5α-reduction and E2’s priming actions at BDNF in the hippocampus/amygdala complex. Full article
(This article belongs to the Special Issue Molecular Insights into Neurotrophins and Neuropsychiatric Disorders)
Show Figures

Figure 1

23 pages, 5480 KiB  
Article
Intraovarian, Isoform-Specific Transcriptional Roles of Progesterone Receptor in Ovulation
by Kirsten M. Smith, Doan T. Dinh, Lisa K. Akison, Matilda Nicholls, Kylie R. Dunning, Atsushi Morimoto, John P. Lydon, Darryl L. Russell and Rebecca L. Robker
Cells 2022, 11(9), 1563; https://doi.org/10.3390/cells11091563 - 5 May 2022
Cited by 7 | Viewed by 3651
Abstract
Progesterone receptor (PGR) activity is obligatory for mammalian ovulation; however, there is no established direct functional pathway explaining how progesterone receptor completely and specifically regulates oocyte release. This study examined the overarching cell- and isoform-specific effects of the PGR within each cellular compartment [...] Read more.
Progesterone receptor (PGR) activity is obligatory for mammalian ovulation; however, there is no established direct functional pathway explaining how progesterone receptor completely and specifically regulates oocyte release. This study examined the overarching cell- and isoform-specific effects of the PGR within each cellular compartment of the ovary, using mice null for the PGR (PRKO), as well as isoform-specific null mice. The PGR was expressed in ovarian granulosa and stromal cells and although PRKO ovaries showed no visible histological changes in preovulatory ovarian morphology, follicle rupture did not occur. Reciprocal ovarian transplant experiments established the necessity of ovarian PGR expression for ovulation. Cumulus–oocyte complexes of PRKO mice exhibited normal morphology but showed some altered gene expression. The examination of mitochondrial activity showed subtle differences in PRKO oocytes but no differences in granulosa cell respiration, glycolysis or β-oxidation. Concurrently, RNA-seq identified novel functional pathways through which the PGR may regulate ovulation. PGR-A was the predominant transcriptionally active isoform in granulosa cells and 154 key PGR-dependent genes were identified, including a secondary network of transcription factors. In addition, the PGR regulated unique gene networks in the ovarian stroma. Collectively, we establish the effector pathways activated by the PGR across the ovarian cell types and conclude that PGR coordinates gene expression in the cumulus, granulosa and stromal cells at ovulation. Identifying these networks linking the PGR to ovulation provides novel targets for fertility therapeutics and nonhormonal contraceptive development. Full article
(This article belongs to the Special Issue Progesterone Receptor Signaling)
Show Figures

Figure 1

Back to TopTop