Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = PM10 air particulats

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
8 pages, 167 KiB  
Article
Genotoxicity of Air Borne Particulates Assessed by Comet and the Salmonella Mutagenicity Test in Jeddah, Saudi Arabia
by Sufian M. ElAssouli, Mohamed H. AlQahtani and Waleed Milaat
Int. J. Environ. Res. Public Health 2007, 4(3), 216-223; https://doi.org/10.3390/ijerph2007030004 - 30 Sep 2007
Cited by 35 | Viewed by 10888
Abstract
Fine airborne respirable particulates less than 10 micrometer (PM10) are considered one of the top environmental public health concerns, since they contain polycyclic aromatic hydrocarbons (PAHs) which are among the major carcinogenic compounds found in urban air. The objective of this study is [...] Read more.
Fine airborne respirable particulates less than 10 micrometer (PM10) are considered one of the top environmental public health concerns, since they contain polycyclic aromatic hydrocarbons (PAHs) which are among the major carcinogenic compounds found in urban air. The objective of this study is to assess the genotoxicity of the ambient PM10 collected at 11 urban sites in Jeddah, Saudi Arabia. The PM10 extractable organic matter (EOM) was examined for its genotoxicity by the single cell gel electrophoresis (SCGE) comet assay and the Salmonella mutagenicity (Ames) test .Gas chromatography-mass spectrometry was used to quantify 16 PAH compounds in four sites. Samples from oil refinery and heavy diesel vehicles traffic sites showed significant DNA damage causing comet in 20-44% of the cells with tail moments ranging from 0.5-2.0 compared to samples from petrol driven cars and residential area, with comet in less than 2% of the cells and tail moments of < 0.02.In the Ames test, polluted sites showed indirect mutagenic response and caused 20-56 rev/ m3, mean while residential and reference sites caused 2-15 rev /m3. The genotoxicity of the EOM in both tests directly correlated with the amount of organic particulate and the PAHs concentrations in the air samples. The PAHs concentrations ranged between 0.83 ng/m3 in industrial and heavy diesel vehicles traffic sites to 0.18 ng /m3 in the residential area. Benzo(ghi)pyrene was the major PAH components and at one site it represented 65.4 % of the total PAHs. Samples of the oil refinery site were more genotoxic in the SCGE assay than samples from the heavy diesel vehicles traffic site, despite the fact that both sites contain almost similar amount of PAHs. The opposite was true for the mutagenicity in the Ames test. This could be due to the nature of the EOM in both sites. These findings confirm the genotoxic potency of the PM10 organic extracts to which urban populations are exposed. Full article
Back to TopTop