Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = PEDV 3CLpro

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 40146 KB  
Article
Hypericin Inhibit Alpha-Coronavirus Replication by Targeting 3CL Protease
by Yue Zhang, Huijie Chen, Mengmeng Zou, Rick Oerlemans, Changhao Shao, Yudong Ren, Ruili Zhang, Xiaodan Huang, Guangxing Li and Yingying Cong
Viruses 2021, 13(9), 1825; https://doi.org/10.3390/v13091825 - 14 Sep 2021
Cited by 35 | Viewed by 4787
Abstract
The porcine epidemic diarrhea virus (PEDV) is an Alphacoronavirus (α-CoV) that causes high mortality in infected piglets, resulting in serious economic losses in the farming industry. Hypericin is a dianthrone compound that has been shown as an antiviral activity on several viruses. Here, [...] Read more.
The porcine epidemic diarrhea virus (PEDV) is an Alphacoronavirus (α-CoV) that causes high mortality in infected piglets, resulting in serious economic losses in the farming industry. Hypericin is a dianthrone compound that has been shown as an antiviral activity on several viruses. Here, we first evaluated the antiviral effect of hypericin in PEDV and found the viral replication and egression were significantly reduced with hypericin post-treatment. As hypericin has been shown in SARS-CoV-2 that it is bound to viral 3CLpro, we thus established a molecular docking between hypericin and PEDV 3CLpro using different software and found hypericin bound to 3CLpro through two pockets. These binding pockets were further verified by another docking between hypericin and PEDV 3CLpro pocket mutants, and the fluorescence resonance energy transfer (FRET) assay confirmed that hypericin inhibits the PEDV 3CLpro activity. Moreover, the alignments of α-CoV 3CLpro sequences or crystal structure revealed that the pockets mediating hypericin and PEDV 3CLpro binding were highly conserved, especially in transmissible gastroenteritis virus (TGEV). We then validated the anti-TGEV effect of hypericin through viral replication and egression. Overall, our results push forward that hypericin was for the first time shown to have an inhibitory effect on PEDV and TGEV by targeting 3CLpro, and it deserves further attention as not only a pan-anti-α-CoV compound but potentially also as a compound of other coronaviral infections. Full article
(This article belongs to the Collection Coronaviruses)
Show Figures

Figure 1

13 pages, 3270 KB  
Article
Inhibition of Porcine Epidemic Diarrhea Virus Replication and Viral 3C-Like Protease by Quercetin
by Zhonghua Li, Hua Cao, Yufang Cheng, Xiaoqian Zhang, Wei Zeng, Yumei Sun, Shuhua Chen, Qigai He and Heyou Han
Int. J. Mol. Sci. 2020, 21(21), 8095; https://doi.org/10.3390/ijms21218095 - 30 Oct 2020
Cited by 53 | Viewed by 4031
Abstract
For the last decade, porcine epidemic diarrhea virus (PEDV) variant strains have caused severe damage to the global pig industry. Until now, no effective antivirals have been developed for the therapeutic treatment of PEDV infection. In the present study, we found that quercetin [...] Read more.
For the last decade, porcine epidemic diarrhea virus (PEDV) variant strains have caused severe damage to the global pig industry. Until now, no effective antivirals have been developed for the therapeutic treatment of PEDV infection. In the present study, we found that quercetin significantly suppressed PEDV infection at noncytotoxic concentrations. A molecular docking study indicated that quercetin might bind the active site and binding pocket of PEDV 3C-like protease (3CLpro). Surface plasmon resonance (SPR) analysis revealed that quercetin exhibited a binding affinity to PEDV 3CLpro. Based on the results of the fluorescence resonance energy transfer (FRET) assay, quercetin was proven to exert an inhibitory effect on PEDV 3CLpro. Since coronavirus 3CLpro is an important drug target and participates in the viral replication process, quercetin should be developed as a novel drug in the control of PEDV infection. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

15 pages, 3432 KB  
Article
Structural Basis for Inhibiting Porcine Epidemic Diarrhea Virus Replication with the 3C-Like Protease Inhibitor GC376
by Gang Ye, Xiaowei Wang, Xiaohan Tong, Yuejun Shi, Zhen F. Fu and Guiqing Peng
Viruses 2020, 12(2), 240; https://doi.org/10.3390/v12020240 - 21 Feb 2020
Cited by 46 | Viewed by 7576
Abstract
Porcine epidemic diarrhea virus (PEDV), being highly virulent and contagious in piglets, has caused significant damage to the pork industries of many countries worldwide. There are no commercial drugs targeting coronaviruses (CoVs), and few studies on anti-PEDV inhibitors. The coronavirus 3C-like protease (3CL [...] Read more.
Porcine epidemic diarrhea virus (PEDV), being highly virulent and contagious in piglets, has caused significant damage to the pork industries of many countries worldwide. There are no commercial drugs targeting coronaviruses (CoVs), and few studies on anti-PEDV inhibitors. The coronavirus 3C-like protease (3CLpro) has a conserved structure and catalytic mechanism and plays a key role during viral polyprotein processing, thus serving as an appealing antiviral drug target. Here, we report the anti-PEDV effect of the broad-spectrum inhibitor GC376 (targeting 3Cpro or 3CLpro of viruses in the picornavirus-like supercluster). GC376 was highly effective against the PEDV 3CLpro and exerted similar inhibitory effects on two PEDV strains. Furthermore, the structure of the PEDV 3CLpro in complex with GC376 was determined at 1.65 Å. We elucidated structural details and analyzed the differences between GC376 binding with the PEDV 3CLpro and GC376 binding with the transmissible gastroenteritis virus (TGEV) 3CLpro. Finally, we explored the substrate specificity of PEDV 3CLpro at the P2 site and analyzed the effects of Leu group modification in GC376 on inhibiting PEDV infection. This study helps us to understand better the PEDV 3CLpro substrate specificity, providing information on the optimization of GC376 for development as an antiviral therapeutic against coronaviruses. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

Back to TopTop