Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = PCR-SMC controller

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4623 KB  
Article
Parallel Network-Based Sliding Mode Tracking Control for Robotic Manipulators with Uncertain Dynamics
by Honggang Wu, Xinming Zhang, Linsen Song, Yufei Zhang, Chen Wang, Xiaonan Zhao and Lidong Gu
Actuators 2023, 12(5), 187; https://doi.org/10.3390/act12050187 - 27 Apr 2023
Cited by 8 | Viewed by 2548
Abstract
Robot dynamics model uncertainty and unpredictable external perturbations are important factors that influence control accuracy and stability. To accurately compensate for the dynamics model in sliding mode control (SMC), a new parallel network (PCR) is proposed in this paper. The network parallelizes the [...] Read more.
Robot dynamics model uncertainty and unpredictable external perturbations are important factors that influence control accuracy and stability. To accurately compensate for the dynamics model in sliding mode control (SMC), a new parallel network (PCR) is proposed in this paper. The network parallelizes the radial basis function and convolutional neural network, which gives it the advantage of making full use of one-dimensional data fitting results and two-dimensional data feature information, realizing the deep learning of multidimensional data and improving the model’s compensation accuracy and anti-interference ability. Meanwhile, based on the integration of adaptive control techniques and gradient descent, a new weight update algorithm is designed to realize the online learning of PCR networks under loss-free functions. Then, a new sliding mode controller (PCR-SMC) is established. The model-free intelligent control of the robot is accomplished without knowledge of the predetermined upper bounds. Additionally, the stability analysis of the control system is proved by the Lyapunov theorem. Lastly, robot tracking control simulations are performed on two trajectories. The results demonstrate the high-precision tracking performance of this controller in comparison with the RBF-SMC controller. Full article
(This article belongs to the Special Issue Modeling, Optimization and Control of Robotic Systems)
Show Figures

Figure 1

15 pages, 3406 KB  
Article
Myostatin Overexpression and Smad Pathway in Detrusor Derived from Pediatric Patients with End-Stage Lower Urinary Tract Dysfunction
by Souzan Salemi, Larissa J. Schori, Tim Gerwinn, Maya Horst and Daniel Eberli
Int. J. Mol. Sci. 2023, 24(5), 4462; https://doi.org/10.3390/ijms24054462 - 24 Feb 2023
Cited by 1 | Viewed by 3984
Abstract
Cell therapies and tissue engineering approaches using smooth muscle cells (SMCs) may provide treatment alternatives for end-stage lower urinary tract dysfunction (ESLUTD). Myostatin, a negative regulator of muscle mass, is a promising target to improve muscle function through tissue engineering. The ultimate goal [...] Read more.
Cell therapies and tissue engineering approaches using smooth muscle cells (SMCs) may provide treatment alternatives for end-stage lower urinary tract dysfunction (ESLUTD). Myostatin, a negative regulator of muscle mass, is a promising target to improve muscle function through tissue engineering. The ultimate goal of our project was to investigate the expression of myostatin and its potential impact in SMCs derived from healthy pediatric bladders and pediatric ESLUTD patients. Human bladder tissue samples were evaluated histologically, and SMCs were isolated and characterized. The proliferation of SMCs was assessed by WST-1 assay. The expression pattern of myostatin, its pathway and the contractile phenotype of the cells were investigated at gene and protein levels by real-time PCR, flow cytometry, immunofluorescence, WES and gel contraction assay. Our results show that myostatin is expressed in human bladder smooth muscle tissue and in isolated SMCs at gene and protein levels. A higher expression of myostatin was detected in ESLUTD-derived compared to control SMCs. Histological assessment of bladder tissue confirmed structural changes and decreased muscle-to-collagen ratios in ESLUTD bladders. A decrease in cell proliferation and in the expression of key contractile genes and proteins, α-SMA, calponin, smoothelin and MyH11, as well as a lower degree of in vitro contractility was observed in ESLUTD-derived compared to control SMCs. A reduction in the myostatin-related proteins Smad 2 and follistatin, and an upregulation in the proteins p-Smad 2 and Smad 7 were observed in ESLUTD SMC samples. This is the first demonstration of myostatin expression in bladder tissue and cells. The increased expression of myostatin and the changes in the Smad pathways were observed in ESLUTD patients. Therefore, myostatin inhibitors could be considered for the enhancement of SMCs for tissue engineering applications and as a therapeutic option for patients with ESLUTD and other smooth muscle disorders. Full article
(This article belongs to the Special Issue Molecular Research in Neuro-Urology)
Show Figures

Figure 1

14 pages, 9730 KB  
Article
Differentiation of Adipose-Derived Stem Cells into Smooth Muscle Cells in an Internal Anal Sphincter-Targeting Anal Incontinence Rat Model
by Minsung Kim, Bo-Young Oh, Ji-Seon Lee, Dogeon Yoon, You-Rin Kim, Wook Chun, Jong Wan Kim and Il Tae Son
J. Clin. Med. 2023, 12(4), 1632; https://doi.org/10.3390/jcm12041632 - 17 Feb 2023
Cited by 2 | Viewed by 2782
Abstract
Objective: Studies on development of an anal incontinence (AI) model targeting smooth muscle cells (SMCs) of the internal anal sphincter (IAS) have not been reported. The differentiation of implanted human adipose-derived stem cells (hADScs) into SMCs in an IAS-targeting AI model has also [...] Read more.
Objective: Studies on development of an anal incontinence (AI) model targeting smooth muscle cells (SMCs) of the internal anal sphincter (IAS) have not been reported. The differentiation of implanted human adipose-derived stem cells (hADScs) into SMCs in an IAS-targeting AI model has also not been demonstrated. We aimed to develop an IAS-targeting AI animal model and to determine the differentiation of hADScs into SMCs in an established model. Materials and Methods: The IAS-targeting AI model was developed by inducing cryoinjury at the inner side of the muscular layer via posterior intersphincteric dissection in Sprague–Dawley rats. Dil-stained hADScs were implanted at the IAS injury site. Multiple markers for SMCs were used to confirm molecular changes before and after cell implantation. Analyses were performed using H&E, immunofluorescence, Masson’s trichrome staining, and quantitative RT–PCR. Results: Impaired smooth muscle layers accompanying other intact layers were identified in the cryoinjury group. Specific SMC markers, including SM22α, calponin, caldesmon, SMMHC, smoothelin, and SDF-1 were significantly decreased in the cryoinjured group compared with levels in the control group. However, CoL1A1 was increased significantly in the cryoinjured group. In the hADSc-treated group, higher levels of SMMHC, smoothelin, SM22α, and α-SMA were observed at two weeks after implantation than at one week after implantation. Cell tracking revealed that Dil-stained cells were located at the site of augmented SMCs. Conclusions: This study first demonstrated that implanted hADSc restored impaired SMCs at the injury site, showing stem cell fate corresponding to the established IAS-specific AI model. Full article
Show Figures

Figure 1

20 pages, 3441 KB  
Article
NTPDase1 Modulates Smooth Muscle Contraction in Mice Bladder by Regulating Nucleotide Receptor Activation Distinctly in Male and Female
by Romuald Brice Babou Kammoe, Gilles Kauffenstein, Julie Pelletier, Bernard Robaye and Jean Sévigny
Biomolecules 2021, 11(2), 147; https://doi.org/10.3390/biom11020147 - 23 Jan 2021
Cited by 6 | Viewed by 4018
Abstract
Nucleotides released by smooth muscle cells (SMCs) and by innervating nerve terminals activate specific P2 receptors and modulate bladder contraction. We hypothesized that cell surface enzymes regulate SMC contraction in mice bladder by controlling the concentration of nucleotides. We showed by immunohistochemistry, enzymatic [...] Read more.
Nucleotides released by smooth muscle cells (SMCs) and by innervating nerve terminals activate specific P2 receptors and modulate bladder contraction. We hypothesized that cell surface enzymes regulate SMC contraction in mice bladder by controlling the concentration of nucleotides. We showed by immunohistochemistry, enzymatic histochemistry, and biochemical activities that nucleoside triphosphate diphosphohydrolase-1 (NTPDase1) and ecto-5′-nucleotidase were the major ectonucleotidases expressed by SMCs in the bladder. RT-qPCR revealed that, among the nucleotide receptors, there was higher expression of P2X1, P2Y1, and P2Y6 receptors. Ex vivo, nucleotides induced a more potent contraction of bladder strips isolated from NTPDase1 deficient (Entpd1−/−) mice compared to wild type controls. The strongest responses were obtained with uridine 5′-triphosphate (UTP) and uridine 5′-diphosphate (UDP), suggesting the involvement of P2Y6 receptors, which was confirmed with P2ry6−/− bladder strips. Interestingly, this response was reduced in female bladders. Our results also suggest the participation of P2X1, P2Y2 and/or P2Y4, and P2Y12 in these contractions. A reduced response to the thromboxane analogue U46619 was also observed in wild type, Entpd1−/−, and P2ry6−/− female bladders showing another difference due to sex. In summary, NTPDase1 modulates the activation of nucleotide receptors in mouse bladder SMCs, and contractions induced by P2Y6 receptor activation were weaker in female bladders. Full article
(This article belongs to the Special Issue 2020 Feature Papers by Biomolecules’ Editorial Board Members)
Show Figures

Figure 1

17 pages, 4555 KB  
Article
Remodeling Matrix Synthesis in a Rat Model of Aortocaval Fistula and the Cyclic Stretch: Impaction in Pulmonary Arterial Hypertension-Congenital Heart Disease
by Chi-Jen Chang, Chung-Chi Huang, Po-Ru Chen and Ying-Ju Lai
Int. J. Mol. Sci. 2020, 21(13), 4676; https://doi.org/10.3390/ijms21134676 - 30 Jun 2020
Cited by 5 | Viewed by 3658
Abstract
Pulmonary arterial hypertension-congenital heart disease (PAH-CHD) is characterized by systemic to pulmonary arterial shunts and sensitively responds to volume overload and stretch of the vascular wall leading to pulmonary vascular remodeling. We hypothesized that the responses of pulmonary artery smooth muscle cells (PASMCs) [...] Read more.
Pulmonary arterial hypertension-congenital heart disease (PAH-CHD) is characterized by systemic to pulmonary arterial shunts and sensitively responds to volume overload and stretch of the vascular wall leading to pulmonary vascular remodeling. We hypothesized that the responses of pulmonary artery smooth muscle cells (PASMCs) to mechanical stress-associated volume overload may promote vascular remodeling in PAH-CHD. Here, we show that significantly increased collagen was in the PA adventitial layer by trichrome staining in PAH-CHD patients and an aortocaval fistula (ACF) rat model in which chronic vascular volume overload induced-PAH. We assessed the gene expression profiles of SMC markers, extracellular matrix, and collagen in isolated SMCs from pulmonary and thoracic vessels with cyclic stretch-triggered responses by real-time PCR analysis. The data corresponded to collagen deposition, which modulated pulmonary vascular remodeling in clinical and experimental PAH-ACF cases as well as in cyclic stretch-triggered SMCs in an in vitro model. We observe that collagen I A2 (COLIA2) is expressed in the control rat, but collagen I A1 (COLIA1) and Notchs remarkably increase in the lungs of ACF rats. Interestingly, closing the left-to-right shunt that leads to a reduced blood volume in the PA system of ACF rats (ACFRs) decreased the expression of COLIA1 and increased that of collagen I A2(COLIA2). This study contributes to the stretch-induced responses of SMCs and provides important future directions for therapies aimed at preventing abnormal matrix protein synthesis in volume overload-induced pulmonary hypertension (PH). Full article
(This article belongs to the Special Issue Molecular Research on Pulmonary Hypertension 2.0)
Show Figures

Figure 1

12 pages, 2447 KB  
Article
Let-7f: A New Potential Circulating Biomarker Identified by miRNA Profiling of Cells Isolated from Human Abdominal Aortic Aneurysm
by Rafaelle Spear, Ludovic Boytard, Renaud Blervaque, Maggy Chwastyniak, David Hot, Jonathan Vanhoutte, Nicolas Lamblin, Philippe Amouyel and Florence Pinet
Int. J. Mol. Sci. 2019, 20(21), 5499; https://doi.org/10.3390/ijms20215499 - 5 Nov 2019
Cited by 12 | Viewed by 3569
Abstract
Abdominal aortic aneurysm (AAA) is a progressive vascular disease responsible for 1–4% of the deaths in elderly men. This study aimed to characterize specific microRNA (miRNA) expression in aneurysmal smooth muscle cells (SMCs) and macrophages in order to identify circulating miRNAs associated with [...] Read more.
Abdominal aortic aneurysm (AAA) is a progressive vascular disease responsible for 1–4% of the deaths in elderly men. This study aimed to characterize specific microRNA (miRNA) expression in aneurysmal smooth muscle cells (SMCs) and macrophages in order to identify circulating miRNAs associated with AAA. We screened 850 miRNAs in aneurysmal SMCs, M1 and M2 macrophages, and in control SMCs isolated by micro-dissection from aortic biopsies using microarray analysis. In all, 92 miRNAs were detected and 10 miRNAs were selected for validation by qRT-PCR in isolated cells (n = 5), whole control and aneurysmal aorta biopsies (n = 13), and plasma from patients (n = 24) undergoing AAA (over 50 mm) repair matched to patients (n = 18) with peripheral arterial disease (PAD) with atherosclerosis but not AAA. Seven miRNAs were modulated similarly in all aneurysmal cells. The Let-7f was downregulated in aneurysmal cells compared to control SMCs with a significant lower expression in M1 compared to M2 macrophages (0.1 fold, p = 0.03), correlated with a significant downregulation in whole aneurysmal aorta compared to control aorta (0.2 fold, p = 0.03). Significant levels of circulating let-7f (p = 0.048) were found in AAA patients compared to PAD patients with no significant correlation with aortic diameter (R2 = 0.03). Our study underlines the utility of profiling isolated aneurysmal cells to identify other miRNAs for which the modulation of expression might be masked when the whole aorta is used. The results highlight let-7f as a new potential biomarker for AAA. Full article
(This article belongs to the Special Issue RNAs in Cardiovascular Diseases-CardioRNA EU COST Action)
Show Figures

Figure 1

Back to TopTop