Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = North Branch (NB) of the Yangtze River Estuary (YRE)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 11084 KiB  
Article
The Responses of Storm Surges to Representative Typhoons under Wave–Current Interaction in the Yangtze River Estuary
by Jie Wang, Cuiping Kuang, Subin Cheng, Daidu Fan, Kuo Chen and Jilong Chen
J. Mar. Sci. Eng. 2024, 12(1), 90; https://doi.org/10.3390/jmse12010090 - 1 Jan 2024
Cited by 4 | Viewed by 1834
Abstract
Storm surge is one of the most remarkable natural calamities, which is shown as the abnormal sea level changes in the coastal waters during a typhoon event. To investigate the responses of storm surges to the typhoon paths, intensities and coastal dynamics, a [...] Read more.
Storm surge is one of the most remarkable natural calamities, which is shown as the abnormal sea level changes in the coastal waters during a typhoon event. To investigate the responses of storm surges to the typhoon paths, intensities and coastal dynamics, a coupled wave–current model is used to study the impacts of strong winds, considerable waves and complex currents on storm surges in the Yangtze River Estuary (YRE) during three representative typhoons of Fongwong (2014), Ampil (2018) and Lekima (2019) with different intensities and paths. The model is verified using the measured data on significant wave height and period, water level and current velocity and performs well in modeling real conditions. The numerical results demonstrate that (1) the maximum storm surge occurred in the South Channel (SC) during Fongwong and Lekima while in the North Branch (NB) during Ampil due to the typhoon path and the estuarine terrain. Among the three typhoons, Lekima presented the highest surge, with a maximum value of 1.17 m at SC2 (the inner point of the SC). There was a negative surge during Ampil, which reached −0.42 m at SC2, due to the representative path (SE to NW) and offshore wind action. (2) Tide is the main influencing factor of storm surge as the maximum or minimum value always occurs at the low or high tidal level, respectively. Meanwhile, typhoon intensity is important as it influences the variation rate of surge with higher intensity leading to a sudden increase in surge while the tidal intensity primarily affects the peak value. (3) The wave setup can counteract the wind-induced negative surge. The peak differences between storm surge isoline and wave setup isoline are 0.15, 0.2 and 0.2 m during Fongwong, Ampil and Lekima, respectively, which illustrates the impacts of the combined actions of the typhoon path and intensity on the wave setup. This research emphasizes the influences of wave–current interaction on estuarine storm surge during typhoon events and reveals the potential risks for oceanic disasters like coastal inundation. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

21 pages, 8729 KiB  
Article
Responses of Hydrodynamics and Saline Water Intrusion to Typhoon Fongwong in the North Branch of the Yangtze River Estuary
by Cuiping Kuang, Kuo Chen, Jie Wang, Yunlong Wu, Xu Liu and Zilong Xia
Appl. Sci. 2021, 11(19), 8986; https://doi.org/10.3390/app11198986 - 27 Sep 2021
Cited by 6 | Viewed by 2187
Abstract
The typhoon impact on an estuarine environment is complex and systematic. A three-dimensional hydrodynamic and salinity transport model with a high-resolution, unstructured mesh and a spatially varying bottom roughness, is applied to investigate the effects of a historical typhoon, Fongwong, which affected Shanghai, [...] Read more.
The typhoon impact on an estuarine environment is complex and systematic. A three-dimensional hydrodynamic and salinity transport model with a high-resolution, unstructured mesh and a spatially varying bottom roughness, is applied to investigate the effects of a historical typhoon, Fongwong, which affected Shanghai, on the hydrodynamics and saline water intrusion in the North Branch (NB) of the Yangtze River Estuary (YRE). The model is well validated through observation data of the tidal level, current velocity and direction, and salinity. The numerical results of this typhoon event show that: (1) the tidal level and its range increase toward the upstream part of the NB due to the combined effects of the funnel-shaped plane geometry of the NB and the typhoon; (2) the current velocity and the flow spilt ratio of the NB varies with the tides, with a maximum increase by 0.13 m/s and 26.61% during the flood tide and a maximum decrease by 0.12 m/s and 83.33% during the ebb tide, i.e., the typhoon enhances the flood current and weakens the ebb current; (3) the salinity value increases in the NB to a maximum of 1.40 psu and water is well-mixed in the vertical direction in the typhoon’s stable and falling period. The salinity distribution gradually recovered to the normal salt wedge pattern in 3 days following the typhoon. Although this study is based on a site-specific model, the findings will provide valuable insights into saline water intrusion under typhoon events, and thus assist in implementing more efficient estuarine management strategies for drinking water safety. Full article
Show Figures

Figure 1

21 pages, 8589 KiB  
Article
Influence of River Discharge on the Transport of the Saltwater Group from the North Branch in the Yangtze River Estuary
by Zhi Xu, Jing Ma, Hao Wang and Jianshi Zhao
Int. J. Environ. Res. Public Health 2020, 17(24), 9156; https://doi.org/10.3390/ijerph17249156 - 8 Dec 2020
Cited by 5 | Viewed by 2756
Abstract
The Yangtze River Estuary (YRE) is the largest estuary in China. Recently, due to the increase of extent and frequency, saltwater intrusion has received more and more attention. In this paper, with the adoption of hydrodynamic and salinity transport mode, quantitative research of [...] Read more.
The Yangtze River Estuary (YRE) is the largest estuary in China. Recently, due to the increase of extent and frequency, saltwater intrusion has received more and more attention. In this paper, with the adoption of hydrodynamic and salinity transport mode, quantitative research of the influence of river discharge to the North Branch (NB) of the Yangtze River on the saltwater group migration law is conducted. Tide and salinity data are used to validate the model effectively. In different paths, the changes in flow and the movement of the saltwater group are similar. The saltwater group starts to move downward from the sixth day. In the staged downward movement, the larger the runoff volume, the further the distance of the core of the saltwater group, and converges to around 90 km gradually. At different flow rates, the relationship between the average location of each waterway saltwater group core tide cycle and time is consistent with the Gompertz model, and its parameters had a nonlinear relationship with the flow rate. A function is constructed to calculate the length and time of the saltwater group migration. As the flow rate increases, the faster the core of the saltwater group reaches the entrance. The downwards movement takes 3–8 days. Quantitative research on the influence of the saltwater spilling from NB to the three major reservoirs in the South Branch (SB)is conducted. The simulation results are consistent with the function calculation. River discharge has a direct impact on saltwater transport and diffusion in the YRE. Full article
(This article belongs to the Section Environmental Science and Engineering)
Show Figures

Figure 1

22 pages, 9483 KiB  
Article
River Discharge and Saltwater Intrusion Level Study of Yangtze River Estuary, China
by Zhi Xu, Jing Ma, Hao Wang, Yajie Hu, Guiyu Yang and Wei Deng
Water 2018, 10(6), 683; https://doi.org/10.3390/w10060683 - 25 May 2018
Cited by 23 | Viewed by 10812
Abstract
The Yangtze River Estuary (YRE) is the largest estuary in China, with three-order bifurcations and four outlets into the sea. In recent years, issues of saltwater intrusions have received increased attention due to the increased levels and frequencies of the intrusions. The saltwater [...] Read more.
The Yangtze River Estuary (YRE) is the largest estuary in China, with three-order bifurcations and four outlets into the sea. In recent years, issues of saltwater intrusions have received increased attention due to the increased levels and frequencies of the intrusions. The saltwater intrusions into the YRE resulting from river discharges were investigated in this study based on river discharge levels at the Datong station. A hydrodynamic and salinity transport model (MIKE21) was used to quantify the influences of the river discharges on the saltwater intrusions in the YRE. The model was effectively validated through observational data of the tidal and salinity levels. The 25%, 50% and 70% frequencies of the river discharges during the dry seasons were determined to be 18,112, 16,331 and 14,832 m3/s, respectively. A multi-year averaged river discharge of 27,856 m3/s was used to simulate the salinity level changes resulting from the different river discharges. The results revealed the following: (1) the salinity of the South Branch (SB) was distributed as “high–low–high”; and the changes in the salinity levels were greatly affected by the river discharges. A strong correlation was found between the salinity and flow in the North Branch (NB) and SB of between 0.917 and 1; (2) the changes in the river discharges had major impacts on the changes in the salinity levels in the SB. When the runoff was 27,856 m3/s, the salinity excessive area rate (the ratio between salinity excessive area (>0.45‰) and the SB area) less than 10%. However, when the river discharges were reduced to 16,331 m3/s, the salinity excessive area rate is more than 50%; (3) As the river discharges decreased, the amplification line (0.2‰) also rapidly decreased, and the amplification lines (0.45‰, 2‰) increased. At points far from the river’s entrance, the effects of the runoff were observed to be weakened, such as the amplification lines gradually becoming reduced; (4) the changes in the river discharges were observed to have significant impacts on the freshwater reservoir water withdrawal. When the river discharges were maintained at 27,856 m3/s, the salinity of the Baogang, Chenhang, and Qingcaosha Reservoirs remained below 0.45‰. The salinity levels of the four reservoir locations examined in this study were found to exceed the Chinese drinking water standard (0.45‰) for more than 23 days in the 14,832 m3/s river discharge scenario, which negatively affected the drinking water of the population living near the YRE. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

Back to TopTop