Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = Nongxiangxing baijiu (NXB)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5119 KiB  
Article
Machine-Learning-Assisted Aroma Profile Prediction in Five Different Quality Grades of Nongxiangxing Baijiu Fermented During Summer Using Sensory Evaluation Combined with GC×GC–TOF-MS
by Dongliang Shao, Wei Cheng, Chao Jiang, Tianquan Pan, Na Li, Mengmeng Li, Ruilong Li, Wei Lan and Xianfeng Du
Foods 2025, 14(10), 1714; https://doi.org/10.3390/foods14101714 - 12 May 2025
Viewed by 900
Abstract
Flavor is one of the crucial factors that influences the quality and consumer acceptance of baijiu. In this study, we analyzed the volatile organic compound (VOC) profiles of five different quality grades of Nongxiangxing baijiu (NXB), fermented during the summer of 2024, using [...] Read more.
Flavor is one of the crucial factors that influences the quality and consumer acceptance of baijiu. In this study, we analyzed the volatile organic compound (VOC) profiles of five different quality grades of Nongxiangxing baijiu (NXB), fermented during the summer of 2024, using 2D gas chromatography time-of-flight mass spectrometry (GC×GC–TOF-MS). We employed machine-learning (ML)-based classification and prediction models to evaluate the flavor. For TW, the scores of the sensory evaluation for coordination and overall evaluation were the highest. TW contained the highest concentration of ethyl caproate; we detected 965 VOCs in total, including several pyrazine compounds with potential health benefits. Principal component analysis (PCA) combined with orthogonal partial least squares discriminant analysis (OPLS-DA) enabled us to distinguish different samples, with eight VOCs emerging as primary contributors to the aroma of the samples, possessing variable importance in projection (VIP) values > 1. Furthermore, we tested eight ML models; random forest (RF) demonstrated the best classification performance, effectively discriminating samples based on their VOC profiles. The key VOC contributors that showed quality-grade specificity included 1-butanol, 3-methyl-1-butanol, and ethyl 5-methylhexanoate. The results elucidate the flavor-based features of NXB and provide a valuable reference for discriminating and predicting baijiu flavors. Full article
Show Figures

Figure 1

Back to TopTop