Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = NiCoCrAlYCe coatings

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
8 pages, 2860 KiB  
Communication
Nanomechanical Characterization of High-Velocity Oxygen-Fuel NiCoCrAlYCe Coating
by Feifei Zhou, Donghui Guo, Baosheng Xu, Yiguang Wang and You Wang
Crystals 2022, 12(9), 1246; https://doi.org/10.3390/cryst12091246 - 2 Sep 2022
Cited by 3 | Viewed by 1678
Abstract
MCrAlY (M = Ni or/and Co) coatings have played an indispensable role in the high-temperature protection system for key components of aero-engines due to their excellent high-temperature oxidation and hot corrosion resistance. Nanoindentation is a useful and highly efficient method for characterizing the [...] Read more.
MCrAlY (M = Ni or/and Co) coatings have played an indispensable role in the high-temperature protection system for key components of aero-engines due to their excellent high-temperature oxidation and hot corrosion resistance. Nanoindentation is a useful and highly efficient method for characterizing the nanomechanical properties of materials. The rich information reflecting materials can be gained by load-displacement curves. In addition to common parameters such as elastic modulus and nanohardness, the indentation work and creep property at room temperature can also be extracted. Herein, nanomechanical properties of NiCoCrAlYCe coatings using high-velocity oxygen-fuel (HVOF) spraying were investigated systematically by nanoindentation. The microstructure of as-sprayed NiCoCrAlYCe coatings present mono-modal distribution. Results of nanoindentation reveal that the elastic modulus and nanohardness of NiCoCrAlYCe coatings are 121.08 ± 10.04 GPa and 6.09 ± 0.86 Gpa, respectively. Furthermore, the indentation work of coatings was also characterized. The elastic indentation work is 10.322 ± 0.721 nJ, and the plastic indentation work is 22.665 ± 1.702 nJ. The ratio of the plastic work to the total work of deformation during indentation is 0.687 ± 0.024, which can predict excellent wear resistance for NiCoCrAlYCe coatings. Meanwhile, the strain rate sensitivity determined by nanoindentation is 0.007 ± 0.001 at room temperature. These results can provide prediction of erosion resistance for MCrAlY coatings. Full article
Show Figures

Figure 1

Back to TopTop