Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = Nb-Si based ultrahigh-temperature alloys

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 5583 KB  
Article
On the Nb5Si3 Silicide in Metallic Ultra-High Temperature Materials
by Panos Tsakiropoulos
Metals 2023, 13(6), 1023; https://doi.org/10.3390/met13061023 - 26 May 2023
Cited by 5 | Viewed by 2415
Abstract
Refractory metal (RM) M5Si3 silicides are desirable intermetallics in metallic ultra-high temperature materials (UHTMs), owing to their creep properties and high Si content that benefits oxidation resistance. Of particular interest is the alloyed Nb5Si3 that forms in [...] Read more.
Refractory metal (RM) M5Si3 silicides are desirable intermetallics in metallic ultra-high temperature materials (UHTMs), owing to their creep properties and high Si content that benefits oxidation resistance. Of particular interest is the alloyed Nb5Si3 that forms in metallic UHTMs with Nb and Si addition. The choice of alloying elements and type of Nb5Si3 that is critical for achieving a balance of properties or meeting a property goal in a metallic UHTM is considered in this paper. Specifically, the different types of alloyed “normal” Nb5Si3 and Ti-rich Nb5Si3, namely “conventional”, “complex concentrated” (CC) or “high entropy” (HE) silicide, in metallic UHTMs with Nb and Si addition were studied. Advanced metallic UHTMs with additions of RMs, transition metals (TMs), Ge, Sn or Ge + Sn and with/without Al and with different Ti, Al, Cr, Si or Sn concentrations were investigated, considering that the motivation of this work was to support the design and development of metallic-UHTMs. The study of the alloyed silicides was based on the Nb/(Ti + Hf) ratio, which is key regarding creep, the parameters VEC and Δχ and relationships between them. The effect of alloying additions on the stability of “conventional”, CC or HE silicide was discussed. The creep and hardness of alloyed Nb5Si3 was considered. Relationships that link “conventional”, CC or HE bcc solid solution and Nb5Si3 in the alloy design methodology NICE (Niobium Intermetallic Composite Elaboration) were presented. For a given temperature and stress, the steady state creep rate of the alloyed silicide, in which TMs substituted Nb, and Al and B substituted Si, depended on its parameters VEC and Δχ and its Nb/(Ti + Hf) ratio, and increased with decreasing parameter and ratio value, compared with the unalloyed Nb5Si3. Types of alloyed Nb5Si3 with VEC and Δχ values closest to those of the unalloyed Nb5Si3 were identified in maps of alloyed Nb5Si3. Good agreement was shown between the calculated hardness and chemical composition of Nb5Si3 and experimental results. Full article
Show Figures

Figure 1

17 pages, 15325 KB  
Article
Microstructure, Mechanical Properties and Oxidation Resistance of Nb-Si Based Ultrahigh-Temperature Alloys Prepared by Hot Press Sintering
by Lijing Zhang, Ping Guan and Xiping Guo
Materials 2023, 16(10), 3809; https://doi.org/10.3390/ma16103809 - 18 May 2023
Cited by 2 | Viewed by 1658
Abstract
Nb-Si based ultrahigh-temperature alloys with the composition of Nb-22Ti-15Si-5Cr-3Al (atomic percentage, at. %) were prepared by hot press sintering (HPS) at 1250, 1350, 1400, 1450 and 1500 °C. The effects of HPS temperatures on the microstructure, room temperature fracture toughness, hardness and isothermal [...] Read more.
Nb-Si based ultrahigh-temperature alloys with the composition of Nb-22Ti-15Si-5Cr-3Al (atomic percentage, at. %) were prepared by hot press sintering (HPS) at 1250, 1350, 1400, 1450 and 1500 °C. The effects of HPS temperatures on the microstructure, room temperature fracture toughness, hardness and isothermal oxidation behavior of the alloys were investigated. The results showed that the microstructures of the alloys prepared by HPS at different temperatures were composed of Nbss, βTiss and γ(Nb,X)5Si3 phases. When the HPS temperature was 1450 °C, the microstructure was fine and nearly equiaxed. When the HPS temperature was lower than 1450 °C, the supersaturated Nbss with insufficient diffusion reaction still existed. When the HPS temperature exceeded 1450 °C, the microstructure coarsened obviously. Both the room temperature fracture toughness and Vickers hardness of the alloys prepared by HPS at 1450 °C were the highest. The alloy prepared by HPS at 1450 °C exhibited the lowest mass gain upon oxidation at 1250 °C for 20 h. The oxide film was mainly composed of Nb2O5, TiNb2O7, TiO2 and a small amount of amorphous silicate. The formation mechanism of oxide film is concluded as follows: TiO2 forms by the preferential reaction of βTiss and O in the alloy; after that, a stable oxide film composed of TiO2 and Nb2O5 forms; then, TiNb2O7 is formed by the reaction of TiO2 and Nb2O5. Full article
(This article belongs to the Special Issue Heat Treatments and Performance of Alloy and Metal)
Show Figures

Figure 1

11 pages, 4201 KB  
Article
Microstructure Evolution and Toughening Mechanism of a Nb-18Si-5HfC Eutectic Alloy Created by Selective Laser Melting
by Longhui Yao, Liang Wang, Xiaojiao Song, Ran Cui, Binqiang Li, Qi Lv, Liangshun Luo, Yanqing Su, Jingjie Guo and Hengzhi Fu
Materials 2022, 15(3), 1190; https://doi.org/10.3390/ma15031190 - 4 Feb 2022
Cited by 3 | Viewed by 2086
Abstract
Because of their superior mechanical performance at ultra-high temperatures, refractory niobium–silicon-based alloys are attractive high-temperature structural alloys, particularly as structural components in gas turbine engines. However, the development of niobium–silicon-based alloys for applications is limited because of the trade-off between room temperature fracture [...] Read more.
Because of their superior mechanical performance at ultra-high temperatures, refractory niobium–silicon-based alloys are attractive high-temperature structural alloys, particularly as structural components in gas turbine engines. However, the development of niobium–silicon-based alloys for applications is limited because of the trade-off between room temperature fracture toughness and high-temperature strength. Here, we report on the fabrication of a Nb-18Si alloy with dispersion of hafnium carbide (HfC) particles through selective laser melting (SLM). XRD and SEM-BSE were used to examine the effects of scanning speed on the microstructure and the phase structure of the deposited Nb-18Si-5HfC alloy. The results show that when the scanning speed rises, the solid solubility of the solid solution improves, the interlamellar spacing of eutectics slowly decrease into nano-scale magnitude, and the corresponding hafnium carbide distribution becomes more uniform. We also discover the hafnium carbide particles dispersion in the inter-lamella structure, which contributes to its high fracture toughness property of 20.7 MPa∙m1/2 at room temperature. Hardness and fracture toughness are simultaneously improved because of the control of microstructure morphology and carbide distribution. Full article
Show Figures

Figure 1

17 pages, 96274 KB  
Review
Microstructure and Oxidation Behavior of Nb-Si-Based Alloys for Ultrahigh Temperature Applications: A Comprehensive Review
by Fuqiang Shen, Yingyi Zhang, Laihao Yu, Tao Fu, Jie Wang, Hong Wang and Kunkun Cui
Coatings 2021, 11(11), 1373; https://doi.org/10.3390/coatings11111373 - 9 Nov 2021
Cited by 27 | Viewed by 5020
Abstract
Nb-Si-based superalloys are considered as the most promising high-temperature structural material to replace the Ni-based superalloys. Unfortunately, the poor oxidation resistance is still a major obstacle to the application of Nb-Si-based alloys. Alloying is a promising method to overcome this problem. In this [...] Read more.
Nb-Si-based superalloys are considered as the most promising high-temperature structural material to replace the Ni-based superalloys. Unfortunately, the poor oxidation resistance is still a major obstacle to the application of Nb-Si-based alloys. Alloying is a promising method to overcome this problem. In this work, the effects of Hf, Cr, Zr, B, and V on the oxidation resistance of Nb-Si-based superalloys were discussed. Furthermore, the microstructure, phase composition, and oxidation characteristics of Nb-Si series alloys were analyzed. The oxidation reaction and failure mechanism of Nb-Si-based alloys were summarized. The significance of this work is to provide some references for further research on high-temperature niobium alloys. Full article
Show Figures

Figure 1

44 pages, 18680 KB  
Article
The Effect of Boron on the Microstructure and Properties of Refractory Metal Intermetallic Composites (RM(Nb)ICs) Based on Nb-24Ti-xSi (x = 16, 17 or 18 at.%) with Additions of Al, Cr or Mo
by Tophan Thandorn and Panos Tsakiropoulos
Materials 2021, 14(20), 6101; https://doi.org/10.3390/ma14206101 - 15 Oct 2021
Cited by 10 | Viewed by 2379
Abstract
This paper is about metallic ultra-high temperature materials, in particular, refractory metal intermetallic composites based on Nb, i.e., RM(Nb)ICs, with the addition of boron, which are compared with refractory metal high entropy alloys (RHEAs) or refractory metal complex concentrated alloys (RCCAs). We studied [...] Read more.
This paper is about metallic ultra-high temperature materials, in particular, refractory metal intermetallic composites based on Nb, i.e., RM(Nb)ICs, with the addition of boron, which are compared with refractory metal high entropy alloys (RHEAs) or refractory metal complex concentrated alloys (RCCAs). We studied the effect of B addition on the density, macrosegregation, microstructure, hardness and oxidation of four RM(Nb)IC alloys, namely the alloys TT2, TT3, TT4 and TT8 with nominal compositions (at.%) Nb-24Ti-16Si-5Cr-7B, Nb-24Ti-16Si-5Al-7B, Nb-24Ti-18Si-5Al-5Cr-8B and Nb-24Ti-17Si-3.5Al-5Cr-6B-2Mo, respectively. The alloys made it possible to compare the effect of B addition on density, hardness or oxidation with that of Ge or Sn addition. The alloys were made using arc melting and their microstructures were characterised in the as cast and heat-treated conditions. The B macrosegregation was highest in TT8. The macrosegregation of Si or Ti increased with the addition of B and was lowest in TT8. The alloy TT8 had the lowest density of 6.41 g/cm3 and the highest specific strength at room temperature, which was also higher than that of RCCAs and RHEAs. The Nbss and T2 silicide were stable in the alloys TT2 and TT3, whereas in TT4 and TT8 the stable phases were the Nbss and the T2 and D88 silicides. Compared with the Ge or Sn addition in the same reference alloy, the B and Ge addition was the least and most effective at 800 °C (i.e., in the pest regime), when no other RM was present in the alloy. Like Ge or Sn, the B addition in TT2, TT3 and TT4 did not suppress scale spallation at 1200 °C. Only the alloy TT8 did not pest and its scales did not spall off at 800 and 1200 °C. The macrosegregation of Si and Ti, the chemical composition of Nbss and T2, the microhardness of Nbss and the hardness of alloys, and the oxidation of the alloys at 800 and 1200 °C were also viewed from the perspective of the alloy design methodology NICE and relationships with the alloy or phase parameters VEC, δ and Δχ. The trends of these parameters and the location of alloys and phases in parameter maps were found to be in agreement with NICE. Full article
Show Figures

Figure 1

15 pages, 6548 KB  
Article
Re-Melting Nb–Si-Based Ultrahigh-Temperature Alloys in Ceramic Mold Shells
by Yin Wang and Xiping Guo
Metals 2019, 9(7), 721; https://doi.org/10.3390/met9070721 - 26 Jun 2019
Cited by 2 | Viewed by 2857
Abstract
In furnaces with different heating elements, Nb–Si based ultrahigh-temperature alloy rods were re-melted in pure yttria mold shells and zirconia face-coat mold shells at 1850 °C for 30 min. The results evidenced that in the furnace with a tungsten heating element, the microstructure [...] Read more.
In furnaces with different heating elements, Nb–Si based ultrahigh-temperature alloy rods were re-melted in pure yttria mold shells and zirconia face-coat mold shells at 1850 °C for 30 min. The results evidenced that in the furnace with a tungsten heating element, the microstructure of the re-melted alloy became coarser, and the composition varied depending on the type of mold shell. Although the interface reaction layer between the re-melted alloy and the zirconia face-coat mold shell was much thicker, the deformability of the mold shell and the sand burning phenomenon of the alloy inside it were improved and ameliorated, respectively. However, after being re-melted in the furnace with a graphite heating element, the misrun phenomenon occurred in both specimens. Both re-melted alloys inside the mold shells were divided by a gap into an internal and an external part, with totally different microstructures and compositions. No reaction layer emerged at the interface between the re-melted alloy and the mold shells. Instead, infiltration zones arose in the mold shells adjacent to the interface. Full article
Show Figures

Figure 1

18 pages, 2258 KB  
Article
On the Microstructure and Isothermal Oxidation of the Si-22Fe-12Cr-12Al-10Ti-5Nb (at.%) Alloy
by Ofelia Hernández-Negrete and Panos Tsakiropoulos
Materials 2019, 12(11), 1806; https://doi.org/10.3390/ma12111806 - 3 Jun 2019
Cited by 5 | Viewed by 2922
Abstract
Nb-silicide based alloys are new ultra-high temperature materials that could replace Ni-based superalloys. Environmentally resistant coating system (s) with αAl2O3 or SiO2 forming bond coat alloys that are chemically compatible with the Nb-silicide based alloy substrates are needed. This [...] Read more.
Nb-silicide based alloys are new ultra-high temperature materials that could replace Ni-based superalloys. Environmentally resistant coating system (s) with αAl2O3 or SiO2 forming bond coat alloys that are chemically compatible with the Nb-silicide based alloy substrates are needed. This paper makes a contribution to the search for non-pesting bond coat alloys. The microstructure and isothermal oxidation at 800 °C of the silicide-based alloy Si-22Fe-12Cr-12Al-10Ti-5Nb (OHC2) were studied. The cast alloy exhibited macrosegregation of all elements. The microstructures in the cast alloy and after the heat treatment at 800 °C consisted of the same phases, namely TM6Si5, TM5Si3 (TM = transition metal), FeSi2Ti, Fe3Al2Si3, (Fe,Cr)(Si,Al), and an unknown phase of dark contrast. The latter two phases were not stable at 950 °C, where the TMSi2 was formed. There was evidence of endothermic reaction(s) below 1200 °C and liquation at 1200 °C. The alloy followed parabolic oxidation kinetics after the first hour of isothermal oxidation at 800 °C, did not pest, and formed a self-healing scale, in which the dominant oxide was Al2O3. The alloy was compared with other alumina or silica scale-forming intermetallic alloys and approaches to the design of bond coat alloys were suggested. Full article
Show Figures

Figure 1

Back to TopTop