Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = Nahuatl and Spanish utterances

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1456 KB  
Article
Natural Language Understanding for Navigation of Service Robots in Low-Resource Domains and Languages: Scenarios in Spanish and Nahuatl
by Amadeo Hernández, Rosa María Ortega-Mendoza, Esaú Villatoro-Tello, César Joel Camacho-Bello and Obed Pérez-Cortés
Mathematics 2024, 12(8), 1136; https://doi.org/10.3390/math12081136 - 10 Apr 2024
Cited by 7 | Viewed by 2613
Abstract
Human–robot interaction is becoming increasingly common to perform useful tasks in everyday life. From the human–machine communication perspective, achieving effective interaction in natural language is one challenge. To address it, natural language processing strategies have recently been used, commonly following a supervised machine [...] Read more.
Human–robot interaction is becoming increasingly common to perform useful tasks in everyday life. From the human–machine communication perspective, achieving effective interaction in natural language is one challenge. To address it, natural language processing strategies have recently been used, commonly following a supervised machine learning framework. In this context, most approaches rely on the use of linguistic resources (e.g., taggers or embeddings), including training corpora. Unfortunately, such resources are scarce for some languages in specific domains, increasing the complexity of solution approaches. Motivated by these challenges, this paper explores deep learning methods for understanding natural language commands emitted to service robots that guide their movements in low-resource scenarios, defined by the use of Spanish and Nahuatl languages, for which linguistic resources are scarcely unavailable for this specific task. Particularly, we applied natural language understanding (NLU) techniques using deep neural networks and transformers-based models. As part of the research methodology, we introduced a labeled dataset of movement commands in the mentioned languages. The results show that models based on transformers work well to recognize commands (intent classification task) and their parameters (e.g., quantities and movement units) in Spanish, achieving a performance of 98.70% (accuracy) and 96.96% (F1) for the intent classification and slot-filling tasks, respectively). In Nahuatl, the best performance obtained was 93.5% (accuracy) and 88.57% (F1) in these tasks, respectively. In general, this study shows that robot movements can be guided in natural language through machine learning models using neural models and cross-lingual transfer strategies, even in low-resource scenarios. Full article
Show Figures

Figure 1

Back to TopTop