Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = NC power dual MM operator (NCPDMM) operator

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 2365 KiB  
Article
Neutrosophic Cubic Power Muirhead Mean Operators with Uncertain Data for Multi-Attribute Decision-Making
by Qaisar Khan, Nasruddin Hassan and Tahir Mahmood
Symmetry 2018, 10(10), 444; https://doi.org/10.3390/sym10100444 - 28 Sep 2018
Cited by 11 | Viewed by 2839
Abstract
The neutrosophic cubic set (NCS) is a hybrid structure, which consists of interval neutrosophic sets (INS) (associated with the undetermined part of information associated with entropy) and single-valued neutrosophic set (SVNS) (associated with the determined part of information). NCS is a better tool [...] Read more.
The neutrosophic cubic set (NCS) is a hybrid structure, which consists of interval neutrosophic sets (INS) (associated with the undetermined part of information associated with entropy) and single-valued neutrosophic set (SVNS) (associated with the determined part of information). NCS is a better tool to handle complex decision-making (DM) problems with INS and SVNS. The main purpose of this article is to develop some new aggregation operators for cubic neutrosophic numbers (NCNs), which is a basic member of NCS. Taking the advantages of Muirhead mean (MM) operator and power average (PA) operator, the power Muirhead mean (PMM) operator is developed and is scrutinized under NC information. To manage the problems upstretched, some new NC aggregation operators, such as the NC power Muirhead mean (NCPMM) operator, weighted NC power Muirhead mean (WNCPMM) operator, NC power dual Muirhead mean (NCPMM) operator and weighted NC power dual Muirhead mean (WNCPDMM) operator are proposed and related properties of these proposed aggregation operators are conferred. The important advantage of the developed aggregation operator is that it can remove the effect of awkward data and it considers the interrelationship among aggregated values at the same time. Furthermore, a novel multi-attribute decision-making (MADM) method is established over the proposed new aggregation operators to confer the usefulness of these operators. Finally, a numerical example is given to show the effectiveness of the developed approach. Full article
Back to TopTop