Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = Moving Finite Line Source Model (MFLS)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 5089 KB  
Article
Evaluation of Thermal Anomalies in Multi-Boreholes Field Considering the Effects of Groundwater Flow
by Shibin Geng, Yong Li, Xu Han, Huiliang Lian and Hua Zhang
Sustainability 2016, 8(6), 577; https://doi.org/10.3390/su8060577 - 20 Jun 2016
Cited by 14 | Viewed by 5318
Abstract
In this paper, the performance of multiple boreholes (multi-BHEs) field is evaluated by considering the groundwater flow. Optimization strategies are presented to mitigate thermal anomalies in the BHEs field. This study shows that groundwater flow greatly improves the heat transfer but causes thermal [...] Read more.
In this paper, the performance of multiple boreholes (multi-BHEs) field is evaluated by considering the groundwater flow. Optimization strategies are presented to mitigate thermal anomalies in the BHEs field. This study shows that groundwater flow greatly improves the heat transfer but causes thermal anomalies downstream. To overcome this problem, a heat transfer model is established for multi-boreholes based on temperature field superposition and moving finite line source model (MFLS). The MFLS multi-boreholes model considers the axial effect and groundwater flow and produces results in agreement with the field tested data of a 4 × 4 boreholes field. Using a dynamic annual load pattern, the long-term performance of the 4 × 4 boreholes field is analyzed. Three dynamic diurnal cooling load models are proposed to evaluate the temperature changes in the underground. The intermittent load model could reduce the local temperature anomalies in downstream tubes. The optimization model for cooling cases for multi-BHEs is elaborated to keep the outlet temperature as low as possible and minimize the extreme temperature anomalies, and by this, ultimately improve the system performance. Furthermore, the temperature variations and thermal anomalies downstream of multi-BHEs are investigated by evaluating the arrangement optimization and load optimization. The results show that the optimization could mitigate thermal anomalies downstream and reduce the rate of temperature imbalance of the BHEs field. Full article
Show Figures

Figure 1

Back to TopTop