Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = MoO3-zeolite BETA

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5158 KiB  
Article
Solvent Influence on Selectivity in α-Pinene Oxide Isomerization Using MoO3-Modified Zeolite BETA
by Eva Vrbková, Eliška Vyskočilová, Miloslav Lhotka and Libor Červený
Catalysts 2020, 10(11), 1244; https://doi.org/10.3390/catal10111244 - 28 Oct 2020
Cited by 14 | Viewed by 2860
Abstract
Natural source turpentine is an available source of α-pinene oxide. This compound’s value is especially given by the possibility of producing important compounds campholenic aldehyde and trans-carveol. In this work, we would like to present the usage of MoO3-modified [...] Read more.
Natural source turpentine is an available source of α-pinene oxide. This compound’s value is especially given by the possibility of producing important compounds campholenic aldehyde and trans-carveol. In this work, we would like to present the usage of MoO3-modified zeolite BETA in α-pinene oxide isomerization concerning campholenic aldehyde and trans-carveol formation using a wide range of solvents. Catalyst calcination temperature also influenced the reaction course (selectivity to desired compounds and reaction rate). MoO3-zeolite BETA was prepared by the wet impregnation method and characterized by different techniques. The use of polar aprotic solvents had the most positive effect on the reaction course. Solvent basicity and polarity considerably influenced the reaction rate and selectivity to particular products. The combination of high basicity and the high polarity was the most suitable for the studied reaction from the reaction rate point of view. Selectivity to campholenic aldehyde and trans-carveol was the most influenced by solvent basicity. Higher solvent basicity caused the preferential formation of trans–carveol, influence on selectivity to campholenic aldehyde formation was the opposite. The described catalyst may be used for α-pinene oxide rearrangement to both desired products dependently on the used solvent. Molybdenum offers an exciting alternative for previously described modifications of zeolites for this reaction. Full article
Show Figures

Graphical abstract

Back to TopTop