Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = Martian Analogues Library

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 4116 KiB  
Article
A Martian Analogues Library (MAL) Applicable for Tianwen-1 MarSCoDe-LIBS Data Interpretation
by Changqing Liu, Zhongchen Wu, Xiaohui Fu, Ping Liu, Yanqing Xin, Ayang Xiao, Hongchun Bai, Shangke Tian, Sheng Wan, Yiheng Liu, Enming Ju, Guobin Jin, Xuejin Lu, Xiaobin Qi and Zongcheng Ling
Remote Sens. 2022, 14(12), 2937; https://doi.org/10.3390/rs14122937 - 20 Jun 2022
Cited by 7 | Viewed by 3205
Abstract
China’s first Mars exploration mission, named Tianwen-1, landed on Mars on 15 May 2021. The Mars Surface Composition Detector (MarSCoDe) payload onboard the Zhurong rover applied the laser-induced breakdown spectroscopy (LIBS) technique to acquire chemical compositions of Martian rocks and soils. The quantitative [...] Read more.
China’s first Mars exploration mission, named Tianwen-1, landed on Mars on 15 May 2021. The Mars Surface Composition Detector (MarSCoDe) payload onboard the Zhurong rover applied the laser-induced breakdown spectroscopy (LIBS) technique to acquire chemical compositions of Martian rocks and soils. The quantitative interpretation of MarSCoDe-LIBS spectra needs to establish a LIBS spectral database that requires plenty of terrestrial geological standards. In this work, we selected 316 terrestrial standards including igneous rocks, sedimentary rocks, metamorphic rocks, and ores, whose chemical compositions, rock types, and chemical weathering characteristics were comparable to those of Martian materials from previous orbital and in situ detections. These rocks were crushed, ground, and sieved into powders less than <38 μm and pressed into pellets to minimize heterogeneity at the scale of laser spot. The chemical compositions of these standards were independently measured by X-ray fluorescence (XRF). Subsequently, the LIBS spectra of MAL standards were acquired using an established LIBS system at Shandong University (SDU-LIBS). In order to evaluate the performance of these standards in LIBS spectral interpretation, we established multivariate models using partial least squares (PLS) and least absolute shrinkage and selection (LASSO) algorithms to predict the abundance of major elements based on SDU-LIBS spectra. The root mean squared error (RMSE) values of these models are comparable to those of the published models for MarSCoDe, ChemCam, and SuperCam, suggesting these PLS and LASSO models work well. From our research, we can conclude that these 316 MAL targets are good candidates to acquire geochemistry information based on the LIBS technique. These targets could be regarded as geological standards to build a LIBS database using a prototype of MarSCoDe in the near future, which is critical to obtain accurate chemical compositions of Martian rocks and soils based on MarSCoDe-LIBS spectral data. Full article
Show Figures

Graphical abstract

Back to TopTop